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Secure and Efficient Bloom Filter-based Image
Search in Cloud-based Internet of Things
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Abstract—Image search is a hot topic, which has played a
significant role in various Internet of Things (IoT) applications,
such as disease diagnosis, face recognition, and fingerprint
recognition. Meanwhile, the proliferation of images has led image
owners to outsource images to the cloud for reducing local storage
and computation burdens. Therefore, image search without com-
promising privacy over cloud has received considerable attention
and extensively explored in the literature. Many Bloom filter-
based schemes have been put forth in past years, however most
of them suffer from high storage overhead, low false positive
rate, and even expose the values in Bloom filter. To solve these
challenges, in this paper, we first design a Merged and Repeated
Indistinguishable Bloom Filter (MRIBF) index structure, which
can reduce the storage overhead and achieve adaptive security
with a low false positive rate. Then, with the MRIBF, we propose
a secure and efficient Bloom Filter-based Image Search scheme
(BFIS) to achieve a faster-than-linear and more accurate search.
Detailed theoretical analysis shows that our scheme is really
accurate and secure. Extensive experiments demonstrate that our
scheme is indeed efficient and feasible.

Index Terms—Image search, Bloom filter, clustering.

I. INTRODUCTION

CONTENT-BASED image search, which aims to identify
images that are similar to the interesting image, has a

significant number of applications in various areas, such as
disease diagnosis, face recognition, and fingerprint recogni-
tion. Since tremendous volumes of data with high velocity
are produced in the Internet of Things (IoT) [1], data owners
with limited computational and storage resources prefer to
outsource their data to a powerful cloud and delegate the cloud
server to provide search services for users as shown in Fig. 1.
However, the data is sensitive and the cloud server is not fully
trusted, outsourcing plaintext data directly to the cloud will
lead to privacy leakage. Encryption is a viable approach, but
it will hinder the cloud server from performing searches over
outsourced ciphertexts.
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Fig. 1. A cloud-assisted search example.

Homomorphic Encryption (HE), which supports ciphertext
computation, can achieve image search over ciphertext. How-
ever, encrypted image search schemes [2]–[5] that encrypt
feature vectors with HE algorithms (e.g., Paillier encryption)
are not suitable for IoT scenarios due to high computational
and storage overheads. Although the Asymmetric Scalar-
product Preserving Encryption (ASPE) algorithm [6] can
greatly reduce the overhead and achieve efficient search over
ciphertext without decryption [7]–[11], it has been proven
to be actually insecure against even Ciphertext-Only Attack
(COA) [12]. Moreover, both homomorphic encryption and
ASPE need to encrypt each feature vector of each image and
then calculate their Euclidean distances, which results in an
increase in overhead as the total number of images increases.
The increased overhead will be unbearable when deployed in
large-scale datasets.

To reduce the overhead, it is an alternative to represent
the image feature vectors with keywords and implement an
approximate search based on Bloom Filter (BF) [13], which
has been extensively explored in academic and industrial
fields. The traditional BF-based schemes build a BF for each
data, resulting in a waste of storage space [14], [15]. Moreover,
to hide the values in BF, encrypting BF with the Hidden Vector
Encryption (HVE) algorithm [16] further increases the storage
overhead of BF [17]. Twin Bloom Filter (TBF) [18], [19]
masks the values in BF with a hash function and a random
number instead of complex cryptographic algorithms, which
can protect the values in BF and achieve adaptive security.
However, the storage overhead of TBF is still twice that of
BF. Circular Shift and Coalesce Bloom Filter (CSCBF) [20]
effectively utilizes the storage space and accelerates the search
process by merging and repeating BF, but it will expose the
values in BF.

Inspired by TBF, we modify the CSCBF to build a novel
index, namely merged and repeated indistinguishable Bloom
filter (MRIBF). MRIBF masks the values in Bloom filters to
achieve adaptive security and repeats multiple Bloom filters to
reduce the false positive rate. With the MRIBF, a secure and
efficient Bloom Filter-based Image Search scheme (BFIS) is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3301969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hangzhou Normal University. Downloaded on December 01,2023 at 13:11:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 2

proposed. Specifically, the main contributions of our work are
three-fold as follows.
• First, we design a novel index structure MRIBF based on

Bloom filter, which not only reduces storage overhead and
false positives rate but also achieves adaptive security.

• Second, we propose a secure and efficient image search
scheme based on MRIBF, namely BFIS, which improves
security and search efficiency.

• Third, we analyze the security of BFIS and conduct
extensive experiments to evaluate its performance. The
results show that our BFIS is adaptively secure and at
least five times faster than the existing schemes.

The remainder of this paper is organized as follows. In
Section II, we introduce some related work. Then, we describe
some preliminaries in Section III and introduce our system
model, threat model, problem definition, and design goals
in Section IV. Later, we present our scheme in Section V,
followed by theoretical analysis and performance evaluation
in Sections VI and VII, respectively. Finally, we conclude our
work in Section VIII.

II. RELATED WORK

In this section, we briefly review some recently proposed
encrypted image search schemes.

Zhang et al. [2] protected the image features with the Paillier
homomorphic encryption algorithm for performing search over
encrypted images. Later, with the multi-level homomorphic
encryption algorithm [21], Zhang et al. [3] presented a privacy-
preserving image search scheme supporting multi-key multi-
user settings. To improve search efficiency, Li et al. [4]
constructed a sub-simhash index based on inverted tables and
then encrypted it with the Paillier homomorphic encryption
algorithm. Furthermore, instead of calculating the Euclidean
distance, Guo et al. [5] calculated the lower bound of the
Euclidean distance by using the mean and standard deviation
of features. Then, they employed the Paillier homomorphic en-
cryption algorithm to encrypt the mean and standard deviation
of features to achieve the exact nearest neighbor search over
encrypted images. Based on [5], Yang et al. [22] proposed an
encrypted image search in the multi-user setting by encrypting
the lower bound on the squared Euclidean distance with the
distributed two trapdoors public-key cryptosystem [23].

Many schemes based on ASPE are proposed to avoid the
high computational and communication overheads caused by
homomorphic encryption. Yuan et al. [7] and Li et al. [10]
designed two lightweight encrypted image search schemes
by constructing an index tree with ASPE and clustering
algorithms. In [8] and [9], Xia et al. used the Local Sensitive
Hash (LSH) and ASPE to build an encrypted hash table
for encrypted images similarity search in cloud computing.
For security improvement, various enhanced ASPE algorithms
are proposed. Based on the Learning with Errors (LWE)
problem [24], Wang et al. [25] and Li et al. [26] used the
enhanced ASPE algorithm to encrypt features, which ensures
that features are secure against the known-background attacks.
To protect the values and orders of similarity scores, Li et
al. [27] and Song et al. [28] designed a privacy-preserving

threshold-based image search scheme by using the matrix
encryption techniques, respectively. In their schemes, each
feature is expanded into a matrix instead of one or two vec-
tors before encryption, which obtains security under Chosen-
Plaintext Attack (CPA) model.

In addition to encrypting feature vectors with HE and
ASPE algorithms, there are schemes to protect the privacy
of feature vectors with the popular Inter Software Guard
Extensions (SGX) and secure multi-party computation tech-
niques. Schemes [29] and [30] utilized the SGX technique
to achieve secure search over ciphertexts. The SGX decrypts
encrypted images and feature vectors, computes the similarity
over plaintexts, and returns the matched encrypted images. In
[31], the secure multi-party computation technique is used to
encrypt image feature vectors and achieve encrypted image
search in multi-source settings. These schemes extract feature
vectors locally before encrypting images to achieve retrieval.
To reduce the local overhead, Xia et al. [32] encrypted the
image locally and then uploaded it to the cloud server for
extracting and retrieving secure features on the encrypted im-
age. They proposed a novel Bag-of-Encrypted Words (BOEW)
model based on the Bag-of-Visual Words (BOVW) model.
BOEW extracts the secure local histograms from the encrypted
images and then organizes them to a secure feature vector.
After that, the Manhattan distances between feature vectors
are computed on the cloud server side. In [33], Xia et al.
applied the BOEW and Term Frequency–Inverse Document
Frequency (TF-IDF) models to design a searchable image
encryption scheme that is compatible with JPEG images.

To improve efficiency and security, we will propose an
image search scheme based on Bloom filter. Compared with
previous schemes, our scheme has the following advantages
shown in TABLE I.

TABLE I
IMAGE SEARCH SCHEMES: A COMPARATIVE SUMMARY.

Schemes Index
Type

Index
Protection

Resistible
Attack

Search
Complexity

Storage
Overhead

[7] Tree ASPE Broken O(log 𝑛) O (𝑛𝑣1 )
[8] Inverted ASPE Broken O(𝐷𝐵(𝑤𝑞 ) ) O (𝑛𝑣1 )
[9] Inverted ASPE Broken O(𝐷𝐵(𝑤𝑞 ) ) O (𝑛𝑣1 )

[10] Tree ASPE Broken O(log 𝑛) O (𝑛𝑣1 )
[11] Linear ASPE Broken O(𝑛) O (𝑛𝑣1 )
[2] Linear HE CPA O(𝑛) O (𝑛𝑣2 )
[3] Linear HE CPA O(𝑛) O (𝑛𝑣2 )
[4] Inverted HE CPA O(𝐷𝐵(𝑤𝑞 ) ) O (𝑛𝑣2 )
[5] Linear HE CPA O(𝑛) O (𝑛𝑣2 )

[25] Linear LWE-ASPE KBA O(𝑛) O (𝑛𝑣1 )
[26] Linear LWE-ASPE KBA O(𝑛) O (𝑛𝑣1 )
[27] Linear Matrix CPA O(𝑛) O (𝑛𝑣2

1 )
[28] Linear Matrix CPA O(𝑛) O (𝑛𝑣2

1 )
Ours BF Hash CKA2 O(𝑟𝑘𝑏) O (𝑟𝑚)

• “CPA”: Chosen-Plaintext Attack; “KBA”: Known-Background Attack;
“CKA”: Chosen-Keyword Attack.
• Security comparison: KBA-secure < CPA-secure < CKA2-secure,
“CKA2-secure”: adaptively secure under CKA.
• “𝑛”: the number of images; “𝐷𝐵(𝑤𝑞 )”: the number of images with
𝑤𝑞 ; “𝑘”: the number of hash functions; “𝑟”: the number of Bloom filters.
• “𝑣1”: the ciphertext size of ASPE encryption; “𝑣2”: the ciphertext size
of homomorphic encryption; “𝑚”: the length of Bloom filter.
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Fig. 2. The illustrations of BF, TBF and CSCBF.

III. PRELIMINARIES

In this section, we will introduce Bloom Filter (BF) [13],
Twin Bloom Filter (TBF) [18], and Circular Shift and Coa-
lesce Bloom Filter (CSCBF) [20], which are used as basic
technologies for our scheme.

A. Bloom Filter (BF)

As shown in Fig. 2, BF has 𝑚 cells and each cell is
initialized with 0. Given a keyword set 𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝐾 }
which contains 𝐾 keywords and a hash function family H =

{ℎ1 (·), ℎ2 (·), · · · , ℎ𝑘 (·)} where each hash function hashes any
keyword to [0, 𝑚−1]. To insert a keyword 𝑤𝛽 ∈ 𝑊 , BF com-
putes the 𝑘 locations ℎ1 (𝑤𝛽), ℎ2 (𝑤𝛽), · · · , ℎ𝑘 (𝑤𝛽) and then
sets the 𝑘 cells BF[ℎ1 (𝑤𝛽)],BF[ℎ2 (𝑤𝛽)], · · · ,BF[ℎ𝑘 (𝑤𝛽)]
to 1. For any query keyword 𝑤𝑞 , BF returns True if the 𝑘

cells BF[ℎ1 (𝑤𝑞)],BF[ℎ2 (𝑤𝑞)], · · · ,BF[ℎ𝑘 (𝑤𝑞)] (cells with
blue lines in Fig. 2) are 1, and False otherwise.

For any keyword 𝑤′ ∉ 𝑊 , BF may return True since
BF[ℎ1 (𝑤)],BF[ℎ2 (𝑤)], · · · ,BF[ℎ𝑘 (𝑤)] may be set to 1 by
other keywords, which causes false positives. When 𝑚 is very
large, the false positive rate [34], [35] of BF is approximated
as

𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾) ≈
(
1 −

(
1 − 1

𝑚

) 𝑘 ·𝐾 ) 𝑘
≈

(
1 − 𝑒− 𝑘 ·𝐾𝑚

) 𝑘
. (1)

B. Twin Bloom Filter (TBF)

The values in BF are exposed, TBF [18] masks the values by
a hash function and a random number to achieve adaptive se-
curity. As shown in Fig. 2, TBF has 𝑚 twins and each twin has
two cells to store 0 or 1. The hash function 𝐻 (·) : {0, 1}∗ →
{0, 1} and the random number 𝛿 determine which cell is cho-
sen and initialized with 0, and the unchosen cell is initialized
with 1. For a keyword 𝑤𝛽 ∈ 𝑊 , TBF uses H to get 𝑘
twin locations ℎ1 (𝑤𝛽), ℎ2 (𝑤𝛽), · · · , ℎ𝑘 (𝑤𝛽). Then, for 𝑘 twins
TBF(ℎ1 (𝑤𝛽)),TBF(ℎ2 (𝑤𝛽)), · · · ,TBF(ℎ𝑘 (𝑤𝛽)), TBF sets
the chosen cell to 1 and the unchosen cell to 0 with 𝐻 (·) and
𝛿. For any query keyword 𝑤𝑞 , TBF returns True if the 𝑘 cho-
sen cells in TBF[ℎ1 (𝑤𝑞)],TBF[ℎ2 (𝑤𝑞)], · · · ,TBF[ℎ𝑘 (𝑤𝑞)]
(cells with blue lines in Fig. 2) are 1, and False otherwise.

The 𝑚 cells in TBF are set to 1 and the chosen cell in
each twin is determined randomly. Thus, the probability of
a polynomial-time adversary correctly guessing which cell is
chosen in a twin is 1

2 + 𝜖 . Here, 𝜖 is a negligible positive
number. In addition, the false positive rate of TBF is the same
as that of BF.

C. Circular Shift and Coalesce Bloom Filter (CSCBF)

To achieve higher storage utilization and efficiency as well
as a lower false positive rate, Circular Shift and Coalesce
Bloom Filter (CSCBF) was proposed in [20], which im-
plements multi-set multi-relational approximate queries over
the plaintext domain. As shown in Fig. 2, CSCBF includes
𝑟 · 𝑚 cells which are initialized with 0. To insert a keyword
𝑤𝛽 ∈ 𝑊 , the pair of (𝑤𝛽 , 𝑖𝑑) is inserted into CSCBF,
where 𝑖𝑑 is the identifier of file contained 𝑤𝛽 . Moreover,
CSCBF merges 𝑛 files into 𝑏 disjointly partitions by using
a hash function 𝑔(·), and repeats 𝑟 times to construct 𝑟 BFs
BF1,BF2, · · · ,BF𝑟 . For any query keyword 𝑤𝑞 , CSCBF finds
𝑘 locations ℎ1 (𝑤𝑞), ℎ2 (𝑤𝑞), · · · , ℎ𝑘 (𝑤𝑞) in each BF. Then, for
location ℎ𝑖 (𝑤𝑞) in BF 𝑗 where 𝑖 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑟], CSCBF
checks 𝑏 follow up cells (cells with blue lines in Fig. 2) to get
the candidate identifiers of files with 𝑤𝑞 . Finally, the identifiers
are obtained by computing the union and intersection of
candidate identifier sets.

Note that, CSCBF constructs 𝑟 BFs BF1,BF2, · · · ,BF𝑟 for
all files, while in BF and TBF each file has a BF or a TBF.
Suppose the number of files is 𝑛, each file has a keyword
set 𝑊𝛼 ⊆ 𝑊 , and 𝑊𝛼 contains |𝑊𝛼 | keywords. For a query
keyword 𝑤𝑞 in none of all files, the false positive rate of
CSCBF is approximated as

𝜖𝐶𝑆𝐶𝐵𝐹 ≈ 𝜖𝐵𝐹 (𝑚, 𝑘,
𝑛∑︁
𝛼=1
|𝑊𝛼 |). (2)

For a query keyword 𝑤𝑞 in 𝑣 files out of 𝑛 files, the false
positive rate of CSCBF is bounded as

𝜖𝐶𝑆𝐶𝐵𝐹 ⪅

(
1 −

(
1 − 𝜖𝐵𝐹 (𝑚, 𝑘,

𝑛∑︁
𝛼=1
|𝑊𝛼 |)

) (
1 − 1

𝑏

)𝑣)𝑟
. (3)
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Fig. 3. System model of BFIS.

IV. MODELS AND DESIGN GOALS

In this section, we describe our system model, threat model,
problem definition, and design goals.

A. System Model

In our system, we consider an image search scenario, which
consists of three parties, i.e., a cloud server CS, a data owner
DO, a set of query users QU𝑠 = {QU1,QU2, · · · }. As shown
in Fig. 3, the role of each entity is shown as follows.

1) Data Owner DO: DO generates keys and sends them to
QU𝑠. In addition, DO encrypts images, constructs a secure
index, and finally sends them to CS.

2) Query Users QU𝑠 = {QU1,QU2, · · · }: With the keys
sent by DO, QU generates the query token for queried image
and then sends the query token to CS.

3) Cloud Server CS: With the unlimited storage and pow-
erful computation resources, CS provides storage service for
DO and search service for QU. Upon receiving the query token
from QU, CS honestly processes query and returns search
results to QU.

As shown in Fig. 3, DO first generates and sends keys to
QU𝑠 (step 1⃝). Then, DO encrypts images via a symmetric
encryption algorithm (e.g., AES, chaos-based encryption), and
constructs an index to achieve efficient search (step 2⃝). When
a certain QU wants to request a query, he/she generates a
query token and then sends it to CS (step 3⃝). Upon receiving
the query token, CS first retrieves the index to obtain the
identifiers of images similar to the query image, and then
retrieves the encrypted image set to obtain the final results.
Finally, CS returns the search results to QU for decryption
(step 4⃝).

B. Threat Model

In our system, DO is honest since he/she owns the images.
Moreover, QU𝑠 are honest. Specifically, QU𝑠 will honestly
issue the reasonable query and not collude with CS. As for
CS, it is considered to be honest-but-curious. It will honestly
store the encrypted images and index for DO and provide
the search services for QU𝑠. However, it may be curious
about the plaintext of encrypted data such as encrypted images
and index, as well as query tokens. Note that we are mainly
concerned with data confidentiality, other leakages such as
access and search patterns leakages are beyond the scope of
this paper and will be discussed in future work.

C. Problem Definition

Suppose 𝐼𝑀𝐺 = {𝑖𝑚𝑔1, 𝑖𝑚𝑔2, · · · , 𝑖𝑚𝑔𝑛} is the image set
of DO. QU selects an interesting image 𝑖𝑚𝑔𝑞 as the query
image. Then, CS computes the Euclidean distances between
𝑖𝑚𝑔𝛼 ∈ 𝐼𝑀𝐺 and 𝑖𝑚𝑔𝑞 for 𝛼 ∈ [1, 𝑛]. According to the
distances, CS finds out the images whose distance from 𝑖𝑚𝑔𝑞
is within a certain range or smallest. In our scheme, to avoid
computing distance, we study the keyword-based image search
problem which is defined as follows.

Definition 1. (Keyword-based Image Search). Each image
𝑖𝑚𝑔𝛼 ∈ 𝐼𝑀𝐺 is represented as a keyword set 𝑊𝛼 ⊆ 𝑊 , where
𝛼 ∈ [1, 𝑛] and 𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝐾 } is a dictionary. Also,
the query image 𝑚𝑞 is represented as a keyword set 𝑊𝑞 ⊆ 𝑊 .
Given a threshold 𝜏 ∈ [1, |𝑊𝑞 |], the search result 𝑅

𝑅 = {𝑖𝑚𝑔𝛼 | |𝑊𝛼 ∩𝑊𝑞 | ≥ 𝜏, 𝛼 ∈ [1, 𝑛]}. (4)

is returned, where | · | denotes the number of elements in set.

Give an example, suppose 𝑊 = {𝑤1, 𝑤2, 𝑤3, 𝑤4}, the
keyword sets of three images 𝑖𝑚𝑔1, 𝑖𝑚𝑔2, 𝑖𝑚𝑔3 and query
image 𝑖𝑚𝑔𝑞 are 𝑊1 = {𝑤1, 𝑤3}, 𝑊2 = {𝑤1, 𝑤2, 𝑤3, 𝑤4}, 𝑊3 =

{𝑤3, 𝑤4}, and 𝑊𝑞 = {𝑤1, 𝑤2, 𝑤3}, respectively. If 𝜏 = 2, then
CS returns the images 𝑖𝑚𝑔1, 𝑖𝑚𝑔2 since |𝑊1 ∩𝑊𝑞 | = 2, |𝑊2 ∩
𝑊𝑞 | = 3. If 𝜏 = 3, the image 𝑖𝑚𝑔2 is returned. During the im-
age search process, the honest-but-curious CS aims to obtain
the plaintexts related to 𝐼𝑀𝐺,𝑊, {𝑊1,𝑊2, · · · ,𝑊𝑛}, 𝑚𝑞 ,𝑊𝑞 ,
while QU hopes to receive accurate search results as quickly as
possible and keep 𝑚𝑞 ,𝑊𝑞 confidential since 𝑚𝑞 may involve
sensitive information.

D. Design Goals

Our design goals are to propose a secure and efficient image
search scheme namely BFIS. Specifically, BFIS should satisfy
the following requirements.
• Adaptive security: In the proposed BFIS, in addition to

the images and query token should be privacy-preserving,
the index should achieve adaptive security. That is, the
adversary cannot distinguish the index simulated by the
simulator.

• Faster-than-linear efficiency: To provide an efficient
search service for QU𝑠, the search results should be
returned as soon as possible. Specifically, the search
process should be faster than linear when deployed in
large-scale datasets.

• Low false positive rate: The search results received by
QU𝑠 should be as accurate as possible with minimal
storage overhead. In other words, the false positive rate
of the index should be low to ensure the validity of search
results.

V. OUR PROPOSED SCHEME

In this section, we first design a novel index structure,
namely Merged and Repeated Indistinguishable Bloom Filter
(MRIBF). Then, with the MRIBF, we present a secure and
efficient Bloom Filter-based Image Search scheme (BFIS).
TABLE II gives some important notations used in this paper.
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Fig. 4. An illustration of MRIBF.

TABLE II
NOTATIONS.

Notations Descriptions

[𝑎, 𝑏] {𝑎, 𝑎 + 1, · · · , 𝑏}
|𝐴| The number of elements of set 𝐴
𝐼𝑀𝐺 Image dataset, 𝐼𝑀𝐺 = {𝑖𝑚𝑔1, 𝑖𝑚𝑔2, · · · , 𝑖𝑚𝑔𝑛 }
𝑛 The number of images in 𝐼𝑀𝐺
𝐾 The number of clustering center vectors
{ ®𝑐1, ®𝑐2, · · · , ®𝑐𝐾 } Clustering center vectors
𝑊 Dictionary, 𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝐾 }
𝑊𝛼 Keyword set of 𝑖𝑚𝑔𝛼, 𝑊𝛼 ⊆ 𝑊
𝐼 Generated index, 𝐼 = {IBF𝑖 }𝑟𝑖=1
𝑖𝑚𝑔𝑞 Query image of QU
®𝑞 Feature vector of 𝑖𝑚𝑔𝑞
𝑊𝑞 Keyword set of 𝑖𝑚𝑔𝑞
𝑇𝐾 Query token of 𝑖𝑚𝑔𝑞
𝑃𝑗,𝑡 The 𝑡-th partition of IBF 𝑗
𝐼𝐷𝑃𝑗,𝑡 Identifiers contained in partition 𝑃𝑗,𝑡

A. Main Idea of Our Scheme

In Section III, we have described the BF, TBF, and CSCBF
index structures for data efficient search. However, they still
suffer from the following limitations.
• Waste storage space. Since each file has a BF or TBF,

the total number of BF or TBF increases with the total
number of files. If BF or TBF’s length is far larger than
what needed to reduce the false positive rate, it will result
in many cells being empty, which is a waste of storage
space.

• High false positive rate. If BF or TBF’s length is not
large enough to save storage space, multiple data may
be mapped to the same cell as the data increases. The
more collisions when inserting data, the higher the false
positive rate when querying data.

• Expose the values in cells. Although the storage overhead
of TBF is twice that of BF, TBF masks the values in
cells with a hash function and a random number, which
implements adaptive security. However, BF and CSCBF
expose the values in cells, which helps the adversary to
infer the relationship between files.

In this paper, we will work on addressing the above
problems. First, by modifying the initialization, insertion, and
checking algorithms of TBF, we make the storage overhead
of the modified TBF only half that of the original TBF
without compromising security. The modified TBF is called

MRIBF’s Constructions

• {H, ℎ𝑘+1 ( ·) , 𝐻 ( ·) , G, Δ} ← MRIBF.Setup(1𝜅 , 𝑘, 𝑚, 𝑏, 𝑟 ): Given the
security parameter 𝜅 , the number of hash functions 𝑘, the length 𝑚 of
IBF, the number of partitions 𝑏, and the number of repetitions 𝑟 , this
algorithm generates the 𝑘 + 1 secret keys 𝑆𝐾1, 𝑆𝐾2, · · · , 𝑆𝐾𝑘+1. Then,
a hash function family H = {ℎ𝑖 ( ·) }𝑘𝑖=1 is constructed using the key-hashed
message authentication code (HMAC), where ℎ𝑖 ( ·) = HMAC𝑆𝐾𝑖 ( ·)%𝑚.
Besides, other hash functions ℎ𝑘+1 ( ·) , 𝐻 ( ·) , and a hash function family
G = {𝑔 𝑗 ( ·) }𝑟𝑗=1 are constructed, where ℎ𝑘+1 ( ·) = HMAC𝑆𝐾𝑘+1 ( ·) ,
𝐻 ( ·) = SHA1( ·)%2, 𝑔 𝑗 ( ·) = SHA1( ·)%𝑏. At last, a set of random
numbers Δ = { 𝛿 𝑗 }𝑟𝑗=1 is generated.
• {IBF 𝑗 }𝑟𝑗=1 ← MRIBF.Initi(𝑚, 𝑟, H, ℎ𝑘+1 ( ·) , 𝐻 ( ·) , G, Δ): This algo-
rithm initializes 𝑟 IBFs {IBF 𝑗 }𝑟𝑗=1, and each IBF has 𝑚 cells. Specifically,
for 𝑖 ∈ [0, 𝑚 − 1], 𝑗 ∈ [1, 𝑟 ],

IBF 𝑗 [𝑖 ] =
{

0, 𝐻 (ℎ𝑘+1 (𝑖) ⊕ 𝛿 𝑗 ) = 0;
1, 𝐻 (ℎ𝑘+1 (𝑖) ⊕ 𝛿 𝑗 ) = 1.

(5)

• {IBF 𝑗 }𝑟𝑗=1 ← MRIBF.Insert( (𝑤, 𝑖𝑑) , {IBF 𝑗 }𝑟𝑗=1, 𝑚, 𝑟 , H, ℎ𝑘+1 ( ·) ,
𝐻 ( ·) , G, Δ): For a pair of keyword and identifier (𝑤, 𝑖𝑑) , this algo-
rithm inserts 𝑤 to the 𝑟 IBFs IBF1, IBF2, · · · , IBF𝑟 . Specifically, for
𝑖 ∈ [1, 𝑘 ], 𝑗 ∈ [1, 𝑟 ],

IBF 𝑗 [ℎ′𝑖, 𝑗 (𝑤) ] =
{

1, 𝐻 (ℎ𝑘+1 (ℎ′𝑖, 𝑗 (𝑤) ) ⊕ 𝛿 𝑗 ) = 0;
0, 𝐻 (ℎ𝑘+1 (ℎ′𝑖, 𝑗 (𝑤) ) ⊕ 𝛿 𝑗 ) = 1,

(6)

where
ℎ′𝑖, 𝑗 (𝑤) = (ℎ𝑖 (𝑤) + 𝑔 𝑗 (𝑖𝑑) )%𝑚. (7)

• {ℎ′
𝑖,𝑡
(𝑤𝑞 ) , ℎ′′𝑖,𝑡 (𝑤𝑞 ) }

𝑘,𝑏−1
𝑖=1,𝑡=0 ← MRIBF.GenQ(𝑤𝑞 , 𝑘, 𝑚, 𝑏, H): Given

a query keyword 𝑤𝑞 , for 𝑖 ∈ [1, 𝑘 ], 𝑡 ∈ [0, 𝑏−1], this algorithm computes
the query request as

ℎ′𝑖,𝑡 (𝑤𝑞 ) = (ℎ𝑖 (𝑤𝑞 ) + 𝑡 )%𝑚,
ℎ′′𝑖,𝑡 (𝑤𝑞 ) = ℎ𝑘+1 ( (ℎ𝑖 (𝑤𝑞 ) + 𝑡 )%𝑚) .

(8)

• 𝑅 ← MRIBF.Check({ℎ′
𝑖,𝑡
(𝑤𝑞 ) , ℎ′′𝑖,𝑡 (𝑤𝑞 ) }

𝑘,𝑏−1
𝑖=1,𝑡=0, {IBF 𝑗 }𝑟𝑗=1, 𝐻 ( ·) , Δ):

With the query request, this algorithm searches each IBF. For IBF 𝑗 and
𝑡 ∈ [0, 𝑏 − 1], this algorithm checks

IBF 𝑗 [ℎ′𝑖,𝑡 (𝑤𝑞 ) ]
?
=

{
1, 𝐻 (ℎ′′

𝑖,𝑡
(𝑤𝑞 ) ⊕ 𝛿 𝑗 ) = 0;

0, 𝐻 (ℎ′′
𝑖,𝑡
(𝑤𝑞 ) ⊕ 𝛿 𝑗 ) = 1.

(9)

If there exists 𝑡 whose 𝑘 values satisfy Eq. 9, then the identifiers of data
with 𝑤𝑞 may be in partition 𝑃𝑗,𝑡 . For partitions reporting the existence of
𝑤𝑞 in IBF 𝑗 , this algorithm finds the identifiers contained in these partitions
and then computes their union set 𝐼𝐷𝑃𝑗 . For {IBF 𝑗 }𝑟𝑗=1, the intersection
of 𝑟 sets are computed to obtain the final results 𝐼𝐷𝑃,

𝐼𝐷𝑃 ← 𝐼𝐷𝑃1 ∩ 𝐼𝐷𝑃2 ∩ · · · ∩ 𝐼𝐷𝑃𝑟 . (10)

Fig. 5. MRIBF’s constructions.

Indistinguishable Bloom Filter (IBF), which remains the adap-
tive security. Then, based on IBF, we protect the values in
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CSCBF and propose a novel index which reduces the false
positive rate, namely Merged and Repeated Indistinguishable
Bloom Filter (MRIBF). Compared with BF, TBF, and CSCBF,
MRIBF achieves efficient search with low storage, low false
positive rate, and adaptive security. As shown in Fig. 4, the
basic building block of MRIBF is an 𝑚-bit IBF. It is masked by
a hash function 𝐻 and a random number 𝛿 to achieve adaptive
security. The unique partition function 𝑔 𝑗 maps 𝑛 identifiers
disjointly into 𝑏 partitions to reduce the storage overhead. And
𝑟 repetitions have the same H , ℎ𝑘+1, 𝐻 and different 𝑔 𝑗 , 𝛿 to
reduce the false positive rate.

The constructions of MRIBF are shown in Fig. 5,
which consists of five algorithms, namely MRIBF.Setup(·),
MRIBF.Initi(·), MRIBF.Insert(·), MRIBF.GenQ(·), as well
as MRIBF.Check(·). At first, hash functions and random
numbers are generated in MRIBF.Setup(·). Then, 𝑟 𝑚-bit
IBFs IBF1, IBF2, · · · , IBF𝑟 are initialized in MRIBF.Initi(·).
Next, MRIBF.Insert(·) inserts the pair of (𝑤, 𝑖𝑑) into 𝑟 IBFs,
where 𝑤 is a keyword and 𝑖𝑑 is the identifier of file with 𝑤.
For any query keyword 𝑤𝑞 , MRIBF.GenQ(·) generates the
query token for search. At last, MRIBF.Check(·) searches 𝑟
IBFs and obtains identifiers of files with 𝑤𝑞 .

Example. In Fig. 4, we give an example of MRIBF with
𝑘 = 2, 𝑚 = 10, 𝑏 = 5 and 𝑟 = 3. According to the
MRIBF.Setup(·) and MRIBF.Initi(·) algorithms, we initial-
ize 3 IBFs IBF1, IBF2, IBF3 as shown in Fig. 4(a). Then,
given a pair of (𝑤, 𝑖𝑑), we insert it into IBF1, IBF2, IBF3
with the algorithm MRIBF.Insert(·). As shown in Fig. 4(b),
𝑔1 (𝑖𝑑), 𝑔2 (𝑖𝑑), 𝑔3 (𝑖𝑑) are three shift ways in IBF1, IBF2, IBF3,
respectively. Next, with the query keyword 𝑤𝑞 , we find its
locations in IBFs by computing ℎ1 (𝑤𝑞), ℎ2 (𝑤𝑞). In Fig. 4(c),
the cells with blue lines are needed to check whether they
satisfy Eq. 9. For IBF1 and 𝑡 = 2, IBF1 [3] satisfies Eq. 9. Thus,
𝑃1,2 may contain the identifiers of data with 𝑤𝑞 . Similarly,
for IBF2 and IBF3, two partitions 𝑃2,3 and 𝑃3,4 are obtained.
Finally, we find the identifiers 𝐼𝐷𝑃1, 𝐼𝐷𝑃2, 𝐼𝐷𝑃3 contained
in 𝑃1,2, 𝑃2,3, 𝑃3,4, and compute the intersection of these iden-
tifiers to obtain the final results 𝐼𝐷𝑃 = 𝐼𝐷𝑃1∩ 𝐼𝐷𝑃2∩ 𝐼𝐷𝑃3.

B. Secure and Efficient Bloom Filter-based Image Search
Scheme (BFIS)

Our MRIBF index can be applied for various data search.
Here, we give a secure and efficient Bloom filter-based image
search scheme (BFIS) to show the MRIBF applications for
image search.

To match the input of MRIBF, we use keywords to represent
images as in existing image search schemes based on Bag-of-
Visual-Word (BOVW) model [36]–[38]. The BOVW model
first clusters the feature vectors of all images into a dictionary
and then counts the frequency of each keyword to obtain a
feature vector for each image. Similarly, we extract feature
vectors from 𝑛 images and cluster them into 𝐾 clusters.
The 𝐾 clustering center vectors are regarded as 𝐾 keywords
and form a dictionary 𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝐾 }. According
to the clustering results, each feature vector is represented
as a keyword, and each image is represented as a keyword
set 𝑊𝛼 ⊆ 𝑊 (𝛼 ∈ [1, 𝑛]). Then, we propose the secure

and efficient Bloom filter-based image search scheme (BFIS),
which consists of four phases, i.e., system initialization, data
outsourcing, query token generation, and query processing.
Details are shown as follows.

1) System Initialization: In the system initialization phase,
DO is responsible for generating keys. First, he/she deter-
mines 𝜅, 𝑘, 𝑚, 𝑏, 𝑟 and runs the MRIBF.Setup(·) algorithm
to generates H = {ℎ1 (·), ℎ2 (·), · · · , ℎ𝑘 (·)}, ℎ𝑘+1 (·), 𝐻 (·),
G = {𝑔1 (·), 𝑔2 (·), · · · , 𝑔𝑟 (·)}, and Δ = {𝛿1, 𝛿2, · · · , 𝛿𝑟 }. Then,
DO sends 𝑃1 to CS and 𝑃2 to QU.

𝑃1 = {𝑟, 𝑏, 𝑘, 𝐻 (·),G,Δ}, 𝑃2 = {𝑚, 𝑏,H , ℎ𝑘+1 (·)}.

At last, DO initializes {IBF𝑖}𝑟𝑖=1 with the MRIBF.Initi(·)
algorithm.

2) Data Outsourcing: In the data outsourcing phase, DO
builds an index based on image features and outsources the
index to CS.
• Step 1: Generate the pair of (𝑤𝛽 , 𝐼𝐷𝑠)
for keyword 𝑤𝛽 ∈ 𝑊 where 𝛽 ∈ [1, 𝐾]). At
first, DO extracts the feature vector set 𝐹𝛼 of each
image 𝑖𝑚𝑔𝛼 ∈ 𝐼𝑀𝐺, where 𝛼 ∈ [1, 𝑛]. Then, with
the 𝐾-means clustering method, DO clusters all feature
vector sets 𝐹 = {𝐹1, 𝐹2, · · · , 𝐹𝑛} to obtain 𝐾 clustering
center vectors ®𝑐1, ®𝑐2, · · · , ®𝑐𝐾 . Each feature vector in 𝐹

can be represented by its nearest clustering center vector.
We regard 𝐾 cluster centers as 𝐾 keywords. Thus, the
dictionary 𝑊 can be represented as

𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝐾 } = { ®𝑐1, ®𝑐2, · · · , ®𝑐𝐾 },

and the feature vector set 𝐹𝛼 can be represented as a
keyword set 𝑊𝛼 ⊆ 𝑊 . For each keyword 𝑤𝛽 ∈ 𝑊 , DO
generates the pair of (𝑤𝛽 , 𝐼𝐷𝑠), where 𝐼𝐷𝑠 denotes the
identifiers of images contained 𝑤𝛽 .

• Step 2: Insert (𝑤𝛽 , 𝐼𝐷𝑠) into {IBF𝑖}𝑟𝑖=1
where 𝛽 ∈ [1, 𝐾]. For each (𝑤𝛽 , 𝐼𝐷𝑠) pair,
𝛽 ∈ [1, 𝐾], DO inserts it into {IBF𝑖}𝑟𝑖=1 by recalling
the MRIBF.Insert(·) algorithm. First, DO computes
the 𝑘 hash values ℎ1 (𝑤𝛽), ℎ2 (𝑤𝛽), · · · , ℎ𝑘 (𝑤𝛽) with
H . Then, for each 𝑖𝑑 ∈ 𝐼𝐷𝑠, 𝑗 ∈ [1, 𝑟] and 𝑖 ∈ [1, 𝑘],
DO computes Eq. 7 with 𝑔 𝑗 to obtain the insertion
location IBF 𝑗 [(ℎ𝑖 (𝑤𝛽) + 𝑔 𝑗 (𝑖𝑑))%𝑚]. After that, DO
computes Eq. 6 with 𝐻 and 𝛿 𝑗 to set the cell’s value.
For 𝛽 ∈ [1, 𝐾], when all (𝑤𝛽 , 𝐼𝐷𝑠) pairs are inserted
into {IBF𝑖}𝑟𝑖=1, the building of search index

𝐼 = {IBF𝑖}𝑟𝑖=1

is finished. At last, DO sends 𝐼 to CS.
3) Query Token Generation: For the query image 𝑚𝑞 ,

QU first extracts its feature vector set 𝐹𝑞 = { ®𝑓1, ®𝑓2, · · · , ®𝑓𝑛𝑞 },
where 𝑛𝑞 is the number of feature vectors. Then, QU finds the
nearest clustering center vector for each ®𝑓𝑖 ∈ 𝐹𝑞 (𝑖 ∈ [1, 𝑛𝑞])
by calculating the square of Euclidean distances

| | ®𝑐1 − ®𝑓𝑖 | |2, | | ®𝑐2 − ®𝑓𝑖 | |2, · · · , | | ®𝑐𝐾 − ®𝑓𝑖 | |2.

After that, QU represents 𝐹𝑞 as a keyword set 𝑊𝑞 ⊆ 𝑊 by
representing each ®𝑓𝑖 ∈ 𝐹𝑞 (𝑖 ∈ [1, 𝑛𝑞]) as its nearest clustering
vector. For each query keyword 𝑤𝛾 ∈ 𝑊𝑞 (𝛾 ∈ [1, |𝑊𝑞 |]), QU
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recalls the MRIBF.GenQ(·) algorithm to generate the query
token 𝑇𝐾𝛾 as

𝑇𝐾𝛾 = {ℎ′𝑖,𝑡 (𝑤𝛾)ℎ′′𝑖,𝑡 (𝑤𝛾)}
𝑘,𝑏−1
𝑖=1,𝑡=0,

where ℎ′
𝑖,𝑡
(𝑤𝛾) and ℎ′′

𝑖,𝑡
(𝑤𝛾) are computed with Eq. 8. Finally,

𝑇𝐾 = {𝑇𝐾𝛾}
|𝑊𝑞 |
𝛾=1 is sent to CS.

4) Query Processing: Upon receiving 𝑇𝐾 from QU, CS
recalls the MRIBF.Check(·) algorithm |𝑊𝑞 | times to get |𝑊𝑞 |
results 𝑅1, 𝑅2, · · · , 𝑅 |𝑊𝑞 | . Then, the identifiers belong to 𝜏

results {𝑅′1, 𝑅
′
2, · · · , 𝑅

′
𝜏} ⊆ {𝑅1, 𝑅2, · · · , 𝑅 |𝑊𝑞 | } form the final

result 𝑅. Specifically, given a query token 𝑇𝐾𝛾 ∈ 𝑇𝐾 , for
each 𝑡 ∈ [0, 𝑏 − 1] in IBF 𝑗 ( 𝑗 ∈ [1, 𝑟]), CS checks whether
IBF 𝑗 [ℎ′1,𝑡 (𝑤𝛾)], IBF 𝑗 [ℎ′2,𝑡 (𝑤𝛾)], · · · , IBF 𝑗 [ℎ′𝑘,𝑡 (𝑤𝛾)] satisfy
Eq. 9. If there exists 𝑡 makes Eq. 9 hold, then the identifiers
of images with 𝑤𝛾 may be in partition 𝑃 𝑗 ,𝑡 . According to
the MRIBF.Check(·) algorithm, CS finally obtains the search
result 𝑅𝛾 = 𝐼𝐷𝑃𝛾 for query token 𝑇𝐾𝛾 . Similarly, for 𝑇𝐾 =

{𝑇𝐾𝛾}
|𝑊𝑞 |
𝛾=1 , CS gets |𝑊𝑞 | search results 𝑅1, 𝑅2, · · · , 𝑅 |𝑊𝑞 | .

The final search result 𝑅 is obtained by computing

𝑅 = {𝑖𝑑 |𝑅′1 ∩ 𝑅
′
2 ∩ · · · ∩ 𝑅

′
𝜏 ∩ 𝑖𝑑 ≠ ∅}

for each 𝑖𝑑 ∈ {𝑅1 ∪ 𝑅2 ∪ · · · ∪ 𝑅 |𝑊𝑞 | } and {𝑅′1, 𝑅
′
2, · · · , 𝑅

′
𝜏} ⊆

{𝑅1, 𝑅2, · · · , 𝑅 |𝑊𝑞 | }.
Remark. In our BFIS, we focus on how to construct and

retrieve the index 𝐼. According to the search result 𝑅, CS
can find the corresponding images in the encrypted image
dataset and return them to QU. Since the image encryption and
decryption processes are independent of index construction
and retrieval processes, and they can be implemented with
existing methods such as AES and chaos-based encryption,
we do not introduce image encryption and decryption in the
proposed BFIS.

VI. THEORETICAL ANALYSIS

In this section, we analyze the false positive rate and
security of our scheme.

A. False Positive Rate Analysis

The false positive rate of our scheme BFIS is caused by the
index structure MRIBF. For simplicity, we assume that each
image has one keyword.

Theorem 1. Assume that a query keyword 𝑤𝑞 of query image
𝑖𝑚𝑔𝑞 is the same as that of the 𝑣 images out of 𝑛 images.
For an image 𝑖𝑚𝑔𝑥 having a different keyword from the query
image, the false positive rate 𝜖𝑀𝑅𝐼𝐵𝐹 of MRIBF returns 𝑖𝑚𝑔𝑥
is

𝜖𝑀𝑅𝐼𝐵𝐹 =

(
1 − (1 − 𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾))

(
1 − 1

𝑏

)𝑣)𝑟
,

where 𝑟 ≥ 2 and 𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾) (shown in Eq. (1)) is the
false positive rate of BF with 𝑚 bits, 𝑘 hash functions and
𝐾 keywords inserted.

Proof. The probability of any two identifiers inserted into the
same partition is 𝑃𝑟 (𝑔(𝑖𝑑1) = 𝑔(𝑖𝑑2)) = 1

𝑏
· 1
𝑏
· 𝑏 = 1

𝑏
. We

analyze two cases as follows.

• Case 1: The probability that 𝑥 is not in the same partition
as the identifiers of 𝑣 images is

(
1 − 1

𝑏

)𝑣
.

• Case 2: the probability that 𝑥 is in the same partition as
the identifiers of 𝑣 images is 1 −

(
1 − 1

𝑏

)𝑣
.

For one repetition, a false positive 𝑤𝑞 occurs must belong
to one of these two cases. The false positive must occurs in
Case 2. While in Case 2, the false positive may be occur
when the Bloom filter incorrectly reports it with a probability
𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾)

(
1 − 1

𝑏

)𝑣
. Therefore, for one repetition, the false

positive rate is

1 −
(
1 − 1

𝑏

)𝑣
+ 𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾)

(
1 − 1

𝑏

)𝑣
.

For 𝑟 repetitions, the total false positive rate is

𝜖 =

(
1 −

(
1 − 1

𝑏

)𝑣
+ 𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾)

(
1 − 1

𝑏

)𝑣)𝑟
=

(
1 − (1 − 𝜖𝐵𝐹 (𝑚, 𝑘, 𝐾))

(
1 − 1

𝑏

)𝑣)𝑟
.

□

B. Security Analysis

We prove that our BFIS is adaptively secure under the
chosen keyword attack (CKA) model [19]. We first define the
following two leakage functions.
• L1 (𝐼, 𝐼𝑀𝐺): Given the index 𝐼 and data set 𝐼𝑀𝐺, this

function outputs the size pattern, which contains the size
of IBF, the number of images, and the partitions of image
identifiers.

• L2 (𝐼, 𝐼𝑀𝐺, 𝑞1, · · · , 𝑞𝑖): Given the index 𝐼, the data set
𝐼𝑀𝐺, and a series of queries 𝑞1, · · · , 𝑞𝑖 , this function
outputs the search pattern, which includes the information
about whether the same query was performed before or
not, and the access pattern, which includes the informa-
tion about which images are returned for 𝑞1, · · · , 𝑞𝑖 .

Based on L1 (𝐼, 𝐼𝑀𝐺) and L2 (𝐼, 𝐼𝑀𝐺, 𝑞1, · · · , 𝑞𝑖), we
define the Real world and Ideal world as follows.
• Real. In the Real world, there are a probabilistic poly-

nomial time (PPT) adversary A and a challenger B.
First, the challenger B initializes the system in the way
shown in the System Initialization phase. Then, the
adversary A selects the image set 𝐼𝑀𝐺 and sends it to
B. According to the steps in Images Outsourcing phase,
B generates the index 𝐼 and returns it to A. Based on 𝐼,
A chooses a query image 𝑚𝑞,1 for B and then receives a
query token 𝑇𝐾1 which is generated with the methods in
Query Token Generation phase. After that, A chooses
a series of query images 𝑚𝑞,2, · · · , 𝑚𝑞,𝑢 and repeats the
above processes in a polynomial time. Finally, A obtains
(𝐼, 𝑇𝐾1, 𝑇𝐾2, · · · , 𝑇𝐾𝑢).

• Ideal. In the Ideal world, there are a PPT adversary A
and a simulator S with leakage L1 and L2. First, the
adversary A selects the image set 𝐼𝑀𝐺. Given L1, a
simulator S generates and sends the index 𝐼∗ to A. Then,
A chooses an image as the query image 𝑚𝑞,1. S generates
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Fig. 6. Accuracy of BFIS.

a token 𝑇𝐾∗1 for 𝑚𝑞,1 according to L2. Next, A chooses
a series of query images 𝑚𝑞,2, · · · , 𝑚𝑞,𝑢 and repeats the
above processes in a polynomial time. Finally, A obtains
(𝐼∗, 𝑇𝐾∗1 , 𝑇𝐾

∗
2 , · · · , 𝑇𝐾

∗
𝑢).

Based on the Real world and Ideal world, we prove
that BFIS is IND-CKA2 (L1,L2)-secure against an adaptive
adversary.

Theorem 2. BFIS is IND-CKA2 (L1,L2)-secure against an
adaptive adversary.

Proof. First, we construct a simulator S that can build a sim-
ulated index 𝐼∗ based on the L1 (𝐼, 𝐼𝑀𝐺). Specifically, it sim-
ulates the encrypted images 𝐼𝑀𝐺∗ = {𝑖𝑚𝑔∗1, 𝑖𝑚𝑔

∗
2, · · · , 𝑖𝑚𝑔

∗
𝑛}

using AES or chaos-based encryption algorithms, the size of
image set 𝑛 and the size of each ciphertext. Then, S sets
up 𝑟 𝑚-bit IBFs. For each cell, S flips a coin to decide the
value stored in the cell. S also stores these coin values locally.
Finally, S sends the simulated index 𝐼∗ to A.

Next, we show how S simulates queries on 𝐼∗ based
on L2 (𝐼, 𝐼𝑀𝐺, 𝑞1, · · · , 𝑞𝑖). After receiving a query 𝑞𝑖 , S
knows whether 𝑞𝑖 has been searched before according to
the revealed search pattern. If it has been searched, S re-
turns the same query token 𝑇𝐾∗

𝑖
to A. Otherwise, S gen-

erates a new query token 𝑇𝐾∗
𝑖

as follows. According to the
partitions 𝐼𝐷𝑃1, 𝐼𝐷𝑃2, · · · , 𝐼𝐷𝑃𝑟 , 𝐼𝐷𝑃𝑞𝑖 revealed by access
pattern in L2 (𝐼, 𝐼𝑀𝐺, 𝑞1, · · · , 𝑞𝑖), S finds 𝑟 · 𝑘 locations in
IBF1, IBF2, · · · , IBF𝑟 so that these locations make Eqs. 9 and
10 hold. To simulate the hash function ℎ𝑘+1 (·), S selects 𝑚
strings 𝑠1, 𝑠2, · · · , 𝑠𝑚 for 𝑚 cells such that the values of 𝐻 (·)
are the same as the stored coin values. Then, S returns 𝑘 · 𝑏
locations and their 𝑘 · 𝑏 strings as the query token 𝑇𝐾∗

𝑖
to A.

According to the simulation process, a probabilistic poly-
nomial time adversary A cannot distinguish (𝐼, 𝑇𝐾𝑖) and
(𝐼∗, 𝑇𝐾∗

𝑖
) since a pseudo-random function is computationally

indistinguishable from a random function [39]. Thus, MRIBF
is IND-CKA2 secure against an adaptive adversary.

□

VII. PERFORMANCE EVALUATION

We evaluate the performance of our BFIS in terms of
accuracy, data outsourcing, query token generation, and query

processing. In addition, we compare the performance of BFIS
with other Bloom filters.

A. Experimental Setting

We conduct experiments on an Ubuntu 18.04 Server with
3.60GHz Intel(R) Core(TM) i7-6500K CPU by using Python.
We randomly select 40,50,60,70,80 images from the first 50
categories in the real-world dataset Caltech256 [40] to form
2000,2500,3000,3500,4000 images. Based on these images,
a series of experiments are conducted. For simplicity, we
extract the global feature vectors by using the pre-trained CNN
model ResNet and reduce the dimension to 128 by using PCA
(Principal Component Analysis) technology. In addition, we
specify HMAC as SHA256.

B. Experimental Results

In this subsection, we will display the experimental results
of accuracy, data outsourcing, query token generation, and
query processing.

1) Accuracy: We compute the accuracy as

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
.

The accuracy is related to 𝑛, 𝐾 , 𝑚, 𝑏, 𝑘 , 𝑟.
• The parameters 𝑛 and 𝐾: Fig. 6a plots the accuracy

in different 𝑛 and 𝐾 . The parameters are set as 𝑛 =

{2000, 2500, 3000, 3500, 4000}, 𝐾 = {30, 60, 90, 120, 150},
𝑚 = 20000, 𝑘 = 3, 𝑟 = 3, 𝑏 = 2000. From this figure, we can
find that the accuracy decreases slightly as 𝑛 increases. When
𝑘 becomes larger, the accuracy will be higher. It is obvious
that the decrease and increase are small.
• The parameters 𝑚 and 𝑏: In Fig. 6b, we give the accuracy

varying with 𝑚 and 𝑏. In this experiment, the parameters
are set as 𝑚 = {10000, 20000, 30000, 40000, 50000}, 𝑏 =

{1000, 2000, 3000, 4000, 5000}, 𝑛 = 2000, 𝐾 = 90, 𝑘 = 3,
𝑟 = 3. When the length of Bloom filter 𝑚 exceeds 20000, the
accuracy can reach 100%. Meanwhile, the accuracy becomes
higher as 𝑏 increases. This is because the larger 𝑚 and 𝑏 are,
the lower the probability of collision when inserting data and
the lower the false positive rate will be.
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Fig. 7. Index generation cost of BFIS in Data Outsourcing phase.
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Fig. 8. Query token generation cost of BFIS in Query Token Generation phase.

• The parameters 𝑘 and 𝑟: In Fig. 6c, we show the accuracy
varying with 𝑘 and 𝑟. We set parameters as 𝑘 = {2, 3, 4, 5},
𝑟 = {2, 3, 4, 5}, 𝑛 = 2000, 𝐾 = 90, 𝑚 = 20000, 𝑏 = 2000. With
the increase of 𝑘 and 𝑟 , the accuracy becomes higher. When
𝑘 = 3, 𝑟 = 3, the accuracy will reach 100%.

2) Data Outsourcing: We give the cost of index generation
in data outsourcing phase. It is affected by parameters 𝑛, 𝐾 ,
𝑚, 𝑏, 𝑘 , 𝑟.
• The parameters 𝑛 and 𝐾: In Fig. 7a, we display the

computational and storage cost versus 𝑛 and 𝐾 . The param-
eters are set as 𝑛 = {2000, 2500, 3000, 3500, 4000}, 𝐾 =

{30, 60, 90, 120, 150}, 𝑚 = 20000, 𝑘 = 3, 𝑟 = 3, 𝑏 = 1000.
From this figure, we can see that the computational cost of
index generation increases with the increase of 𝑛 but remains
almost constant for 𝐾 . Moreover, the storage cost is also
unchanged since 𝑚 and 𝑟 are fixed.
• The parameters 𝑚 and 𝑏: In Fig. 7b, we give the

cost of data outsourcing varying with 𝑚 and 𝑏. We set
parameters as 𝑚 = {10000, 20000, 30000, 40000, 50000}, 𝑏 =

{1000, 2000, 3000, 4000, 5000}, 𝑛 = 2000, 𝐾 = 90, 𝑘 = 3,
𝑟 = 3. From this figure, we can see that the computational
cost is almost unchanged as 𝑚 and 𝑏 increase. However, the
storage cost increases linearly with the increase of 𝑚.
• The parameters 𝑘 and 𝑟: In Fig. 7c, we plot the cost of

data outsourcing varying with 𝑘 and 𝑟. We set parameters as
𝑘 = {2, 3, 4, 5}, 𝑟 = {2, 3, 4, 5}, 𝑛 = 2000, 𝐾 = 90, 𝑚 = 20000,

𝑏 = 2000, and we can see that the computational cost of data
outsourcing increases with the increase of 𝑘 and 𝑟 . This is
because the increase of 𝑘 and 𝑟 leads to more data insertion
operations. Since 𝑟 increases from 2 to 5, the storage cost
increases from 4.88KB to 12.2KB.

3) Query Token Generation: As described in Section V-B,
the computational cost of query token generation is related
to 𝐾 , 𝑏, 𝑘 . Thus, we set 𝐾 = {30, 60, 90, 120, 150}, 𝑏 =

{1000, 2000, 3000, 4000, 5000}, 𝑘 = {2, 3, 4, 5}. Also, we give
the computational cost related to 𝑛, 𝑚 and 𝑟 .
• The parameters 𝑛 and 𝐾: In Fig. 8a, we plot the

computational cost of query token generation varying with 𝐾
and 𝑛 while fixing 𝑚 = 20000, 𝑏 = 2000, 𝑘 = 3, 𝑟 = 3.
From this figure, we can find that changes in 𝑛 and 𝐾 cause
almost no change in computational cost, indicating that the
main factors affecting the change in query token generation
computational cost are 𝑏 and 𝑘 .
• The parameters 𝑚 and 𝑏: Fig. 8b shows the computational

cost varying with 𝑚 and 𝑏. In this experiment, 𝑛 = 2000,
𝐾 = 90, 𝑘 = 3, 𝑟 = 3. When 𝑚 increases from 10000 to
50000, the computational cost remains unchanged. While 𝑏

increases from 1000 to 5000, the computational cost increases
significantly. This is because the values of 𝑘 · 𝑏 cells are
calculated when generating the query token.
• The parameters 𝑘 and 𝑟: In Fig. 8c, we give the compu-

tational cost versus 𝑘 and 𝑟 for 𝑛 = 2000, 𝐾 = 90, 𝑚 = 20000,
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Fig. 9. Query processing cost of BFIS in Query Processing phase.
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Fig. 10. Compared with other filters.

𝑏 = 2000. It can be seen that the change in 𝑟 does not affect
the cost of query token generation. When 𝑘 varies from 2 to
5, the cost also becomes larger.

4) Query Processing: As described in Section V-B, the
computational cost of query processing is related to parameters
𝑛, 𝐾 , 𝑚, 𝑏, 𝑘 , 𝑟 .
• The parameters 𝑛 and 𝐾: The computational cost of query

processing varying with 𝑛 and 𝐾 is displayed in Fig. 9a. We
set parameters as 𝑛 = {2000, 2500, 3000, 3500, 4000}, 𝐾 =

{30, 60, 90, 120, 150}, 𝑚 = 20000, 𝑘 = 3, 𝑟 = 3, 𝑏 = 1000.
In this figure, the cost increases as 𝑛 increases. However, the
impact of 𝐾 on the cost is not significant since 𝐾 affects the
cost of computing the union and intersection sets. The set
operation is very efficient and has a small cost in the overall
query processing.
• The parameters 𝑚 and 𝑏: Fig. 9b shows the computa-

tional cost of query processing varying with 𝑚 and 𝑏. We
set parameters as 𝑚 = {10000, 20000, 30000, 40000, 50000},
𝑏 = {1000, 2000, 3000, 4000, 5000}, 𝑛 = 2000, 𝐾 = 90, 𝑘 = 3,
𝑟 = 3. We can see from Fig. 9b that the larger 𝑏 is, the more
cost will be required. While the cost varying with 𝑚 is the
opposite. This is because there require fewer operations for
intersection and union of partitions as 𝑚 increases.
• The parameters 𝑘 and 𝑟: In Fig. 9c, we present the

computational cost of query processing versus 𝑘 and 𝑟 when

𝑘 = {2, 3, 4, 5}, 𝑟 = {2, 3, 4, 5}, 𝑛 = 2000, 𝐾 = 90, 𝑚 = 20000,
𝑏 = 2000. Obviously, the increase in 𝑘 and 𝑟 introduces more
computational cost since there are more cells to check.

5) Compared with Other Filters: In Fig. 10, we compare
the performance of our MRIBF (Merged and Repeated In-
distinguishable Bloom Filter) with BF (Bloom Filter), TBF
(Twin Bloom Filter) and CSCBF (Circular Shift and Coalesce
Bloom Filter) in terms of data outsourcing, query token
generation, and query processing. We set the parameters are
𝑛 = {2000, 2500, 3000, 3500, 4000}, 𝐾 = 90, 𝑚 = 20000,
𝑏 = 2000, 𝑘 = 3, 𝑟 = 3. Since the accuracy of the four filters
is 100%, we do not give a figure to show the results. The cost
of index generation in the Data Outsourcing phase is shown
in Fig. 10a. As the total number of images increases, the cost
of four filters also increases. When we fix the total number of
images, since the clustering operation has a great effect on the
cost than the hash operation, the index generation cost of four
filters is similar. During the Query Token Generation phase,
MRIBF has significantly more cost as shown in Fig. 10b. This
is because MRIBF needs to do 2𝑘𝑏 hashes, while BF and
CSCBF only need to do 𝑘 hashes, and TBF only needs to do
2𝑘 hashes. In the Query Processing phase, because MRIBF
needs to do 𝑘𝑏𝑟 XOR and hash operations, the cost is more
than other filters. In order to reduce the query processing
cost, XOR and hash operations can be performed by QU.
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However, this increases the query token generation cost. In this
paper, to reduce the burden of terminal user QU as much as
possible, we leave the XOR and hash operations to the CS to
complete. In addition, although MRIBF increases significantly,
its computational cost is still at the millisecond level and its
storage cost will not increase proportionally with the total
number of images, which is acceptable for terminal users.

6) Compared with Other Schemes: In TABLE III, we
compare our BFIS with two other image search schemes under
the different total numbers of images. One is the scheme
with matrix encryption [28], and the other is the scheme with
homomorphic encryption [3]. Without loss of generality, we
replace the multi-key homomorphic encryption in [3] with the
most classic Paillier homomorphic encryption. The parameters
are set as 𝑛 = {2000, 3000, 4000}, 𝑑 = 128, 𝐾 = 90, 𝑚 =

20000, 𝑏 = 2000, 𝑘 = 3, 𝑟 = 3. The computational cost of
all three schemes increases as the total number of images
increases. Since BFIS clusters image features with 𝐾-means
clustering, the computational cost of index generation is higher
than that of [28]. However, the storage cost of BFIS in index
generation is minimal and reduced by at least a factor of 104

and 103 compared with [28] and [3]. In addition, BFIS also
requires the minimal computational cost in query processing.
These results indicate that BFIS has a obvious advantages in
retrieval.

TABLE III
COMPARISON OF VARIOUS SCHEMES.

Computational
and Storage Cost 𝑛 BFIS Matrix

Encryption [28]
Homomorphic
Encryption [3]

Index
Generation

2000 1.69s 0.47s 8.04h
7.32KB 125MB 31.25MB

3000 1.78s 0.69s 12.34h
7.32KB 187.5MB 46.875MB

4000 2.08s 0.83s 16.16h
7.32KB 250MB 62.5MB

Query
Processing

2000 0.03s 0.12s 13.53min
3000 0.04s 0.21s 20.25min
4000 0.05s 0.28s 27.18min

VIII. CONCLUSION

In this paper, we first design a merged and repeated indistin-
guishable Bloom filter index MRIBF. Then, based on MRIBF,
we propose a secure and efficient image search scheme (BFIS).
Compared with the previous schemes, our BFIS achieves
higher security and efficiency. Detailed analysis shows that
BFIS is really adaptively secure under chosen keyword attacks.
In addition, we implemented BFIS in Python and evaluated its
performance on the real-world dataset. Experimental results
show that BFIS is efficient and feasible. In the future, we aim
to promote BFIS from two aspects: (1) compressing the length
of the filter via an XOR operation; (2) hiding search patterns
and access patterns.
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