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BSM-LP: Bidirectional Switch Migration
With Controller Load Prediction for
Software-Defined Internet of Things

Quanze Liu , Yong Liu , Qian Meng , and Tianyi Yu

Abstract—The software-defined Internet of Things (SD-IoT)
utilizes the centralized control and programmability of software-
defined networking (SDN) to enhance network performance
optimization and efficient resource utilization in Internet of
Things. As the network scale expands, the multiple-controller
architecture becomes crucial for ensuring reliability and scal-
ability in SD-IoT. However, the dynamic changes in traffic
patterns often lead to imbalanced loads among controllers.
Existing solutions primarily focus on switch migration schemes,
but traditional schemes primarily rely on real-time data to assess
controller loads, which fails to predict future controller loads
and leads to unnecessary switch migrations. Meanwhile, exist-
ing schemes frequently encounter the challenge of overloading
the target controller, leading to reduced migration efficiency.
Furthermore, conventional schemes tend to overlook the issue
of isolated nodes that arise from switch migrations, thereby
compromising network reliability and security. To address these
challenges, we propose bidirectional switch migration based on
load prediction (BSM-LP), which utilizes an ATT-GRU model to
accurately predict controller loads based on historical load data,
thereby preventing unnecessary switch migrations. Moreover,
we introduce a bidirectional switch migration algorithm that
enhances migration efficiency while avoiding overloading the
target controller. Additionally, we present an algorithm for
identifying and integrating isolated nodes to reduce their occur-
rence. Finally, we validate the effectiveness of BSM-LP, and
the experimental results demonstrate that it reduces the load
imbalance rate by an average of 22.3% and the response time
by 30.5% compared to existing schemes.

Index Terms—Internet of Things (IoT), load balancing, load
prediction, software-defined networking (SDN), switch migration.

I. INTRODUCTION

THE Internet of Things (IoT) constitutes an intelli-
gent network that possesses the ability to exchange

information among objects without direct human involvement.
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These objects encompass a variety of devices, including
sensors, actuators, computers, and other intelligent entities.
Through the integration of advanced technologies, such as
5G communications, cloud computing, edge computing, and
sensor systems, the IoT enables diverse functionalities and
finds extensive applications in domains, such as healthcare,
community services, transportation, and environmental mon-
itoring [1]. However, the expanding scale of the IoT poses
challenges for traditional network technologies. The complex-
ity associated with managing the Internet hampers the dynamic
deployment of new services, thus impeding the development
of IoT.

To overcome these challenges, software-defined networking
(SDN) has emerged as a potential solution [2], [3], [4]. SDN
transforms traditional networks into programmable networks
by separating the network control plane from the data plane
and being operated by one or more SDN controllers. By inte-
grating SDN with the IoT, a distributed software-defined IoT
(SD-IoT) architecture with high controllability and flexibility
has been proposed [5]. The general architecture of SD-IoT
is illustrated in Fig. 1, which consists of the application,
network, and perception layers. The application layer utilizes
a specialized application programming interface (API) known
as the northbound API to establish communication with the
SDN controller. It leverages the information gathered at the
network layer to provide customers with application-specific
services. In the architecture, the SDN switch employs a flow
table for packet forwarding, which can be interconnected and
match a broader range of fields. When a packet arrives at the
switch, it undergoes a comparison process with the entries in
the flow table. If a match is found, the packet’s forwarding
actions associated with the entry are executed. Otherwise,
the switch forwards the packet to the SDN controller for
the forwarding decision via the southbound API. The SDN
controller analyzes the received packet and determines the
appropriate action. If necessary, it creates a new flow entry in
the switch’s flow table to define how similar packets should
be handled in the future. At the bottom of the architecture lies
the perception layer, which comprises diverse devices. Among
these devices, sensors play a crucial role in various domains
by enabling data perception and collection. Additionally,
wireless access points (APs) like WiFi and WiMAX are
employed to facilitate the seamless transmission of mes-
sages from IoT devices to the SDN switch through wireless
channels.
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Fig. 1. SD-IoT architecture.

In the distributed SD-IoT architecture, the control plane con-
sists of multiple physically distributed but logically centralized
controllers. Compared to a single-controller architecture, a
multiple-controller architecture can fulfill the network require-
ments of large-scale deployments, high performance, high
flexibility, and robust support for stable network operations
and efficient interoperability. However, the control plane often
faces the challenge of load imbalances due to continuous
changes in network traffic, which can not only result in wasted
resources, degraded performance, and network instability but
also hamper the overall interoperability of the IoT systems.
Therefore, to address this challenge, researchers have proposed
dynamic switch migration schemes. Its main idea is to dynam-
ically adjust the mapping between switches and controllers
in real time, with the aim of achieving load balancing at the
granularity of switches. However, conventional schemes fail
to fully exploit the controller load information. Additionally,
relying solely on real-time load information makes it chal-
lenging to accurately predict future controller loads, leading to
unnecessary switch migrations. Furthermore, existing schemes
may overload the target controller after migration, failing
to effectively alleviate the load imbalance and resulting in
decreased load balancing performance. Moreover, traditional
schemes overlook the issue of isolated nodes caused by
switch migrations. This results in cross-domain communica-
tion between the migrated switch and other switch within the
same control domain, which compromises network reliability
and security.

To address the aforementioned issues, we propose the
bidirectional switch migration based on load prediction (BSM-
LP) scheme. This scheme utilizes an ATT-GRU model for
predicting controller loads and preventing unnecessary switch
migrations. Furthermore, a bidirectional switch migration
strategy is employed to mitigate the overload issue of the
target controller. Additionally, to enhance network reliabil-
ity and security, we propose an isolated node integration
algorithm to identify and integrate isolated nodes in the
network.

In summary, the main contributions of this article are as
follows.

1) In contrast to conventional schemes that depend on real-
time data collection for controller load measurement, we
present the controller load prediction algorithm based on
the ATT-GRU model. By utilizing the temporal depen-
dencies in historical load data, this algorithm accurately
predicts the future load of controllers, thereby preventing
unnecessary switch migrations.

2) Differing from the traditional unidirectional migration
schemes, we propose a novel bidirectional switch migra-
tion algorithm to address the issue of overloading
the target controller. Based on the improved grey
wolf optimizer, this algorithm enables bidirectional
switch migration among multiple controllers. It not only
prevents target controller overload but also enhances
migration efficiency.

3) To tackle the problem of isolated nodes caused by
switch migration, we present an isolated node integration
algorithm that identifies isolated nodes in the network
and performs integration operations, thus improving the
load balancing performance.

4) The proposed scheme has been evaluated on the Mininet
platform with Ryu as the network controller, and the
experimental results validate the effectiveness of the
scheme. Compared to the existing schemes, it reduces
the load imbalance rate by an average of 22.3% and the
response time by 30.5%.

The remainder of this article is structured as follows.
Section II provides an overview of the related work and
the motivation behind this research. Section III describes the
BSM-LP scheme in detail. The experimental evaluation is
conducted in Section IV. Finally, this article is concluded in
Section V.

II. MOTIVATION AND RELATED WORK

A. Motivation

1) Problem of Overloading the Target Controller: In SD-
IoT, the fluctuation of network traffic originating from IoT
devices can lead to local network overload, resulting in an
imbalance in load distribution among multiple controllers.
Traditional switch migration approaches rely solely on uni-
directional migration to achieve load balancing. However,
in certain cases, migrating switches from an overloaded
controller to an underloaded controller does not achieve
load balancing and may even overload the target controller.
Therefore, considering various types of migration approaches
is necessary to achieve load balancing in the control plane. To
further illustrate this issue, we introduce a specific example, as
shown in Fig. 2. In this example, we assume a total capacity
of 100% for each controller, with an overload threshold set
at 90%. In Fig. 2(a), controller C1 becomes overloaded while
controllers C2 and C3 have sufficient remaining capacity to
achieve load balancing. During unidirectional migration, due
to the granularity of switches, migrating either switch S1
or S2 would lead to new overloaded controllers, as shown
in Fig. 2(b). However, by employing bidirectional migration
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(a) (b) (c)

Fig. 2. Example of bidirectional migration. (a) Load is unbalanced.
(b) Unidirectional migration. (c) Bidirectional migration.

(a) (b)

Fig. 3. Problem of isolated nodes. (a) Before switch migration. (b) After
switch migration.

and migrating switch S1 to C3 and switch S5 to C1, load
balancing can be successfully achieved in Fig. 2(c), ensuring
that the load of all three controllers remains below the overload
threshold.

2) Problem of Isolated Nodes: In conventional schemes,
once a load imbalance is detected, switches are migrated
from the domain network of the overloaded controller to
the domain network of the underloaded controller to achieve
load balancing. However, most of these schemes overlook the
issue of isolated nodes arising from switch migration. When
a network has an isolated node that needs to communicate
with switches in the same control domain, it must traverse the
domain network managed by other controllers. This results in
a transformation of the original intradomain communication
into interdomain communication. In Fig. 3, when controller
C1 becomes overloaded, switch S4 is migrated to the target
controller C3 to achieve load balancing. However, when
switch S4 communicates with switches S7–S9, which are also
managed by the same controller, it must send requests to
both its master controllers C3 and C1 during interdomain
communication. This places an additional burden on both
controllers, resulting in performance degradation within the
control plane. Moreover, since interdomain communication
requires passing through other controllers, it also impacts
network security and reliability.

B. Related Work

The centralized control and programmability of SDN enable
efficient management of large-scale networks and integration
with advanced technologies [6]. In work [7], researchers pro-
vide a novel SDN-based control and management framework
for IoT that enables simultaneous traffic balancing among IoT
servers and meets the QoS requirements of various services.
Salehnia et al. [8] utilized a combination of WOA and AO
algorithms to address the scheduling problem of IoT device

requests in the functional cloud (FC), and they proved that the
scheduling algorithm performs better with SDN.

The conventional single-controller architecture encounters
challenges in complexity and flexibility when accommodat-
ing large-scale networks. Additionally, the single-controller
architecture is susceptible to single points of failure and
performance bottlenecks. Therefore, the concept of a multiple-
controller architecture has been proposed and researched. This
architecture addresses the performance deficiencies of the
control plane while improving the scalability and reliability of
the network. The controller placement problem was initially
introduced by Heller et al. [9], who also proposed a scheme
to determine the number and placement of controllers by
constraining the transmission delay between the controller and
the switch. Subsequently, researchers have proposed different
schemes for controller placement. Saeed and Ullah [10]
presented the CMOPHA scheme, which considers the path
reliability for switch-to-controller and controller-to-controller
communication and uses the NSGA-II algorithm to compute
the optimum placement of controllers. Lange et al. [11]
presented a framework for pareto-based optimal controller
placement that offers optimal placements with respect to
various performance metrics. Additionally, the framework
provides both an exhaustive method with higher accuracy and
a heuristic method with faster computational speed, catering
to different network scales. Zhang et al. [12] formulated a
multiobjective optimization controller placement problem and
use the adaptive bacterial foraging optimization algorithm with
redefined computation rules to achieve high network reliability,
load balance among controllers, and low latency between con-
trollers and switches. However, the aforementioned schemes
for controller placement maintain a static mapping between
controllers and switches, which is inadequate to adapt to the
dynamic fluctuations in IoT traffic, leading to imbalanced
loads among multiple controllers and a decrease in the
performance of the control plane.

To tackle the challenge of load imbalance among multiple
controllers, Dixit et al. [13] introduced the concept of switch
migration strategy. The main idea of this strategy is to dynam-
ically adjust the mapping between switches and controllers,
allowing for dynamic load adjustment among multiple con-
trollers and achieving load balancing. However, this strategy
does not take into account the remaining capacity of the target
controller, which can lead to the problem of target controller
overload. In work [14], Cui et al. proposed a multicontroller
load balancing strategy based on response time. They utilized
the relationship between controller load and response time
to select an appropriate response time threshold for detecting
overloaded controllers. However, this approach also neglects
the issue of target controller overload. Mokhtar et al. [15]
proposed a switch migration scheme based on multilevel
thresholds. This scheme divides the controller load into
multiple levels. When the load level of a controller differs
from that of other controllers, switch migration is triggered.
The thresholds are dynamically adjusted to achieve continuous
load balancing among distributed controllers. In work [16],
Lai et al. proposed the time-sharing switch migration (TSSM)
scheme. By allowing two controllers to share a switch’s
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load sequentially in the same period, this scheme achieves
load balancing in the control plane with finer-grained switch
migration. In work [17], Li et al. proposed a switch migration
strategy based on dynamic thresholds. This strategy dynami-
cally adjusts the overload threshold of controllers based on real
time changes in network load, enabling a balanced distribution
of controller load. However, this strategy can only handle one
overloaded controller at a time, resulting in lower efficiency in
switch migration. Sun et al. [18] proposed a switch migration
scheme based on multiagent reinforcement learning to gener-
ate switch migration actions. This scheme enables faster load
balancing and improves network performance. In work [19],
Sridevi and Saifulla proposed a metaheuristic approach for
achieving load balancing in the control plane. Based on the
artificial bee colony optimization algorithm, this approach
aims to select the most suitable migration operation from
multiple candidate solutions to balance the load in the long
run and maintain an even distribution of the load.

In the aforementioned research, the measurement of con-
troller load is achieved through real-time state collection.
However, this approach does not effectively leverage historical
load data and lacks accurate prediction of controller load.
Due to the randomness and uncertainty of traffic in IoT, an
overloaded controller in the current period may recover to a
normal state in the next period. Depending solely on real-time
load information for switch migration decisions, without con-
sidering future controller load trends, can lead to unnecessary
switch migrations. Furthermore, most existing schemes adopt
unidirectional switch migration, which can easily overload the
target controller, thereby diminishing the efficiency of switch
migration. Additionally, current schemes often overlook the
issue of isolated nodes caused by switch migration, which
further impacts the load balancing performance. To address
these issues, we propose the BSM-LP scheme. In this scheme,
we employ an ATT-GRU model to predict controller load
in real time, effectively improving the accuracy of load
measurement and preventing unnecessary switch migrations.
Moreover, we introduce the multi-to-multi bidirectional switch
migration strategy, which allows for the simultaneous handling
of multiple overloaded controllers and resolves the issue of
target controller overload. Furthermore, we propose an isolated
node integration algorithm aimed at identifying and integrating
isolated nodes to reduce their occurrence.

III. DESIGN OF BSM-LP

In this article, we assume that the SDN network consists
of a set of switches Ŝ = {S1, S2, S3, . . . , SNS} and a set
of controllers Ĉ = {C1, C2, C3, . . . , CNC }, where NC and
NS represent the total number of controllers and switches,
respectively. Each controller Ci ∈ Ĉ manages a corresponding
domain, where the set of switches in the domain is denoted
by ŜCi and satisfies

⋃
Ci∈Ĉ

ŜCi = Ŝ. In addition, for any two

controllers Ci and Cj in the network, we stipulate that ŜCi ∩
ŜCj = ∅, which indicates that the sets of switches managed
by different controllers are distinct from each other. The
OpenFlow protocol enables a switch to establish connections
with multiple controllers. From the switch’s perspective, three

Fig. 4. Overview architecture of BSM-LP.

distinct controller roles are defined: 1) master; 2) slave; and
3) equal. The master controller is responsible for processing
Packet-In messages, while the slave and equal controllers
primarily serve as backup controllers [20]. Moreover, the
protocol specifies that each switch can connect to multiple
equal or slave controllers, but only one master controller.
Therefore, for a switch, the controller with the master role can
be considered the logically unique controller connected to the
switch, as shown below

NC∑

i=1

rki = 1 (1)

where rki represents the connection between controller Ci and
switch Sk. If there is a connection between Ci and Sk, it is
denoted as 1; otherwise, it is denoted as 0.

BSM-LP adopts a hierarchical architecture, as shown in
Fig. 4. The leader controller consists of three parts: 1) the
load balancing module; 2) the data storage component; and
3) the message distribution component. The load balancing
module comprises three submodules: 1) the controller load
prediction module; 2) the bidirectional migration module;
and 3) the isolated node integration module. The data stor-
age component is responsible for storing and maintaining
network information from the lower-level controllers, while
the message distribution component informs the involved
controllers about the migration decisions. The controllers at
the lower level have two primary functions: 1) executing
switch migration and 2) handling various network requests
from the SDN switches. Initially, the leader controller monitors
the load status of each controller continuously to detect load
imbalances. If a load imbalance is detected, it proceeds by
dividing the underloaded and overloaded controllers. It then
applies the multi-to-multi bidirectional migration algorithm to
achieve controller load balancing. Subsequently, it executes the
isolated node identification and integration operation to reduce
the occurrence of isolated nodes. Moreover, while providing a
detailed description of BSM-LP, we have made the following
realistic assumptions.
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Assumption 1: Each switch has only one master controller,
while the remaining controllers can only run in an equal or
slave mode.

Assumption 2: In a given time interval, all the controllers
cannot be overloaded simultaneously.

A. Load Prediction

Traditional approaches typically employ periodic data col-
lection to evaluate the load on the controllers. However,
in SD-IoT, the load on controllers tends to fluctuate with
variations in network traffic, and the currently overloaded
controller may return to a normal load state in the subse-
quent period. Therefore, relying solely on real-time data for
controller load measurement can result in misclassification
of overloaded controllers and trigger unnecessary switch
migrations. Therefore, we propose a controller load prediction
algorithm based on the ATT-GRU model, which leverages
historical data to predict the controller load and accurately
classify overloaded controllers. Existing research indicates that
the controller load primarily originates from the processing
of Packet-In messages [21]. Hence, we use the total number
of Packet-In messages processed by Ci within a period t to
represent the load of controller Ci, denoted as L(Ci, t). It can
be calculated using the following equation:

L(Ci, t) =
Ns∑

m=1

L(Sm, t)× rm,i (2)

where L(Sm, t) represents the total number of Packet-In mes-
sages generated by switch Sm within period t. We denote
CapacityCi

as the total capacity of controller Ci, which
represents the maximum number of Packet-In messages that
controller Ci can handle in a period. Additionally, we use δi

to represent the overload threshold of the controller, satisfying
CapacityCi

>δi. When the current controller load exceeds the
predefined overload threshold, we also predict the controller
load for the next period using the ATT-GRU model. Only
when the predicted load also exceeds the threshold will the
subsequent switch migration decisions be triggered.

In this article, we use the improved gated recurrent unit
(GRU) model based on the attention mechanism for load
prediction. As an enhancement of recurrent neural networks
(RNNs), GRU [22] accurately captures temporal dependencies
using gate mechanisms and resolves the problem of vanishing
and exploding gradients in RNNs. In addition, compared to the
long short-term memory (LSTM) [23] model, the GRU model
has a simpler structure, requires fewer training parameters,
and exhibits higher training efficiency. Therefore, we utilize
the GRU model to capture temporal dependencies. The model
structure is shown in Fig. 5, and the calculation process for
prediction is shown as follows:

ut = σ
(
Wu ×

[
Xt, ht−1

]+ bu
)

(3)

zt = σ
(
Wz ×

[
Xt, ht−1

]+ bz
)

(4)

ct = tanh
(
Wc ×

[
Xt, (zt × ht−1)

]+ bc
)

(5)

ht = ut × ht−1 + (1− ut)× ct (6)

where ht−1 denotes the output at period t − 1 and ht denotes
the output at period t. ut and zt represent the update gate and

Fig. 5. Architecture of the GRU model.

reset gate at period t. ct is the content of the memory cell at the
period t. Based on this calculation process, GRU effectively
captures the current load information while retaining the
historical load trends.

With the sequential processing of time steps, the
GRU model can capture temporal dependencies effectively.
However, relying solely on temporal order is insufficient to
accurately distinguish the importance of different time points.
Therefore, a mechanism that learns global correlations is
needed to enhance model performance. The attention model
is realized on the basis of the encoder–decoder model and
was initially developed for neural machine translation tasks.
Nowadays, attention models have been widely applied in
various domains, such as image caption generation [24] and
recommendation system [25]. With the rapid development of
such models, different types of attention mechanisms have
been proposed, including soft attention and hard attention [26],
global and local attention [27], and self-attention [28]. In our
work, we adopt the soft attention mechanism to learn the
importance of load information at each time step and calculate
a context vector to express the global variation trends of the
load state.

Suppose that we introduce a time series xi(i = 1, 2, . . . , n),
where n represents the length of the time series. The design
process for the soft attention model is described as follows.
First, the hidden states hi(i = 1, 2, . . . , n) at different time
steps are calculated using RNNs (and their variants) and
represented as H = (h1, h2, . . . , hn). Second, a scoring
function to calculate the score/weight for each hidden state
is designed. Then, an attention function to compute a context
vector Ct is also designed to describe global load variation
information. Finally, the final output result is obtained by
using the context vector. Specifically, the features hi at each
time step were utilized as input when computing the weight
for each hidden state, and the corresponding outputs can be
obtained through two hidden layers. A Softmax normalized
index function defined in (8) is used to determine the weights
of each characteristic (αi). The weights and biases of the
first layer are denoted by w(1) and b(1), and the weights
and biases of the second layer are denoted by w(2) and b(2),
respectively

ei = w(2)

(
w(1)H + b(1)

)+ b(2) (7)

αi = exp(ei)
∑n

k=1 exp(ek)
. (8)

Finally, we designed the attention function, and the calculation
process of the context vector Ct that covers global load
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Fig. 6. Architecture of the ATT-GRU model.

variation information is shown below

Ct =
n∑

i=1

αi × hi. (9)

The structure of the ATT-GRU model is illustrated in
Fig. 6. By inputting n historical time series load data
into the ATT-GRU model, the hidden states h covering
the temporal characteristics are obtained: {ht−n, . . . , ht−1, ht}.
Subsequently, the hidden states are fed into the attention model
to determine a context vector that captures the global load
variation information. Specifically, a multilayer perceptron
structure and a Softmax function are used to calculate the
weights for each hidden state h: {at−n, . . . , at−1, at}. The
context vector, representing the weighted sum of the hidden
states, is then computed to capture the global load varia-
tion information. Finally, the prediction results are obtained
through a fully connected layer. Furthermore, in model
training, we aim to minimize errors between the real and pre-
dicted number of Packet-In messages in the SD-IoT network.
Therefore, the objective function of ATT-GRU is shown below

loss =
∥
∥
∥Yt − Ŷt

∥
∥
∥+ λLreg (10)

where the first term is to minimize the real and predicted
number of Packet-In messages. Y and Ŷ denote the real and
predicted numbers of Packet-In messages sent from different
switches at period t, respectively. In the second term, Lreg is
a normalization term, and λ denotes a hyperparameter.

The specific execution process of the controller load
prediction algorithm is illustrated in Algorithm 1. First, the
load data is periodically obtained, and based on the set of
switches ŜCi managed by each controller, the load of each
controller is calculated using (2), as shown from steps 3
and 4. Then, the controller load is compared to the overload
threshold. If the load is greater than or equal to the threshold,
the algorithm retrieves the real-time prediction results from the
ATT-GRU model and calculates the controller load for the next
time period, as shown from steps 5 to 7. If L(Ci, t + 1) ≥ σi,
it indicates that the controller will still be in an overloaded

Algorithm 1 Load Prediction

Input: Controller set Ĉ, Switch set Ŝ, Feature matrix Xt;
Output: Overloaded controller set ĈO, Underloaded con-

troller set ĈU;
1: Initialization: ĈO ← ∅, ĈU ← ∅;
2: for Ci ∈ Ĉ do
3: Fetch ŜCi ;
4: Calculate L(Ci, t) according to Eq. (2);
5: if L(Ci, t) ≥ σi then
6: Xt+1 ← ATT-GRU(Xt);
7: Calculate L(Ci, t + 1) according to Eq. (2);
8: if L(Ci, t + 1) ≥ σi then
9: ĈO ← Ci;

10: else
11: ĈU ← Ci;
12: end if
13: else
14: ĈU ← Ci;
15: end if
16: end for
17: return ĈO, ĈU .

state in the next time period. Hence, it is classified as an
overloaded controller and added to the overloaded controller
set ĈO. Otherwise, the controller is added to the underloaded
controller set ĈU .

B. Multi-to-Multi Bidirectional Migration

When a load imbalance is detected, it is imperative to
promptly make the corresponding load balancing decisions.
Existing schemes rely on migrating switches from overloaded
controllers to underloaded controllers to achieve load balanc-
ing. However, the traditional unidirectional migration approach
can overload the target controller due to granularity issues
in switch migration. Therefore, we propose a bidirectional
switch migration strategy. Based on the improved grey wolf
algorithm, this strategy can not only enable the simultaneous
handling of multiple overloaded controllers but also facilitate
bidirectional migration between overloaded and underloaded
controllers, which enhances both flexibility and efficiency.

1) Overview of Grey Wolf Optimizer: Grey wolf
optimization (GWO) is a population-based evolutionary
algorithm inspired by the social hierarchy and hunting
mechanisms of grey wolves in nature. It offers advantages,
such as simplicity in operation, minimal parameter settings,
and fast convergence speed [29]. Grey wolves are social
animals that typically form packs of a dozen individuals and
establish a strict pyramid-like hierarchical structure. In a wolf
pack, the alpha wolf is the leader positioned at the top of the
hierarchy. It is responsible for hunting and decision making,
with other wolves required to follow its commands. The beta
wolf occupies the second layer and assists the alpha wolf
in decision making. It has control over the remainder of the
pack and provides feedback based on information from other
wolves. The delta wolf is in the third layer and executes the
decisions made by the alpha and beta wolves. It holds a higher
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position than the omega wolf. The omega wolf, at the bottom
layer, assists in hunting prey and supports the hunting action.

To mathematically model the hunting behavior of grey
wolves, we start by randomly generating a set of grey wolves
within the search space. Next, we estimate the prey’s position
using the positions of the alpha, beta, and delta wolves. The
remaining wolves calculate their distances to the alpha, beta,
and delta wolves and move closer to the prey, gradually
surrounding it. Finally, the wolves capture the prey. The
specific modeling steps are as follows, and we represent the
positions of the prey and the grey wolves in the tth iteration
using position vectors �Xt

p and �Xt, respectively. The description
of the encircling mechanism in the (t + 1)th iteration is as
follows:

�Xt+1 = �Xt
p + �A · �D (11)

�D =
∣
∣
∣�C · �Xt

p − �Xt
∣
∣
∣ (12)

�A = 2a · �r1 − a (13)
�C = 2 · �r2 (14)

where t represents the current iteration number, �A and �D are
coefficient vectors, and �r1 and �r2 are randomly generated
vectors within the range [0, 1]. a represents the exploration
rate, which linearly decreases from 2 to 0 during the iteration
process. Grey wolves possess the ability to identify the posi-
tion of their prey and engage in encircling behavior. The alpha
wolf typically leads the hunting process, occasionally assisted
by the beta and delta wolves. However, in an abstract search
space, the exact location of the optimal solution (i.e., the prey)
cannot be determined. To simulate the hunting behavior of
grey wolves, we assume that the alpha, beta, and delta wolves
possess superior tracking abilities. Thus, we keep track of the
three best solutions obtained and require other search agents
(including the omega wolf) to update their positions based on
the positions of the three best solutions, denoted as �Xα , �Xβ ,
and �Xδ . The specific description of this approach is as follows:

�Dα =
∣
∣
∣ �C1 · �Xα − �Xt

∣
∣
∣ (15)

�Dβ =
∣
∣
∣ �C2 · �Xβ − �Xt

∣
∣
∣ (16)

�Dδ =
∣
∣
∣ �C3 · �Xδ − �Xt

∣
∣
∣ (17)

�X1 = �Xα + �A1 · �Dα (18)
�X2 = �Xβ + �A2 · �Dβ (19)
�X3 = �Xδ + �A3 · �Dδ (20)

�Xt+1 = �X1 + �X2 + �X3

3
(21)

where �A1, �A2, and �A3 are similar to �A, �C1, �C2, and �C3 are
similar to �C, as defined in (13) and (14).

2) Improved Grey Wolf Optimizer: The standard GWO
algorithm is specifically designed for solving continu-
ous optimization problems. However, the switch migration
problem is a problem of combinatorial optimization, mak-
ing the direct application of the standard GWO algorithm
unsuitable. Therefore, we have proposed improvements to the
standard GWO algorithm. By incorporating a hybrid integer

Fig. 7. Example of the hybrid integer encoding method.

encoding method and a novel wolf position update method, we
adapt the algorithm to tackle the bidirectional switch migration
problem. Next, we present the employed encoding method
and the fitness evaluation approach. Finally, we present the
enhanced mechanism for wolf position update and conclude
with the pseudocode for the proposed algorithm.

a) Solution encoding and fitness evaluation: In the con-
text of the bidirectional switch migration problem, this article
adopts a two-segment hybrid coding method to encode
each solution. Our objective is to achieve load balancing
through bidirectional switch migration between overloaded
and underloaded controllers. Therefore, each switch under the
overloaded and underloaded controllers is associated with an
integer number, and the solution is encoded as an integer string
to represent the position of a wolf in the pack. Fig. 7 presents
an example of the encoding method. The example consists
of four controllers, with two controllers being overloaded and
two being underloaded. A possible solution can be encoded
as an integer string: {0, 1, 1, 2, 0, 0, 2, 1, 1}. Each
integer on the left portion of the string represents a switch
managed by an overloaded controller, and each switch can
take on three values: 0, 1, or 2. 0 indicates that the current
connection should be preserved, 1 indicates migration to the
first underloaded controller C3, and 2 indicates migration to
the second underloaded controller C4. Each integer on the
right portion of the string represents a switch managed by
underloaded controllers, with values of 0, 1, or 2. 0 indicates
no migration, while 1 and 2 correspond to the positions of the
overloaded controller set. Furthermore, to evaluate the quality
of the current solution, a fitness function is designed, where
a smaller function value indicates a better solution, and the
function is defined as follows:

F
(
Xt) = P

(
Xt)×

(

w1 × mc(Xt)

Ns
+ w2 × LIR(Xt)

)

(22)

where w1 and w2 are the weight coefficients of migration cost
and load imbalance rate, with the sum of weights equaling 1.
P(Xt) represents the penalty function, which takes a value
of 1 when the load of all controllers is below the overload
threshold and a value of 10 otherwise. mc(Xt) represents the
migration cost, denoted by the number of migrated switches.
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LIR represents the load imbalance rate, which is used to
measure the degree of load imbalance among controllers and
is defined as follows:

LIR =
∑M

i=1

∣
∣LoadCi − L̄

∣
∣

M · L̄ (23)

where M represents the total number of underloaded and
overloaded controllers, and L̄ represents the average load of
the controllers.

b) Population initialization and position update: In this
approach, the reverse learning strategy with elite retention [30]
is designed to initialize the population. The optimization
capability and final solution quality of population-based intel-
ligence optimization algorithms are directly influenced by the
quality of the initial population. By enhancing the diversity of
the initial population, the algorithm’s optimization ability can
be strengthened. However, the basic GWO algorithm utilizes
a random strategy for population initialization, which fails to
ensure diversity and consequently impacts its performance.
Therefore, we employ a reverse learning strategy with elite
retention for population initialization. Specifically, the primary
steps of this strategy are as follows.

1) Randomly initialize the positions of N grey wolf individ-
uals X within the search space as the initial population
P1, where N represents the number of individuals in the
population.

2) Generate the corresponding reverse individual X′ for
each grey wolf individual X in P1 and add to the reverse
population P2.

3) Merge the initial population P1 and the reverse popu-
lation P2. Sort the merged 2× N grey wolf individuals
based on their fitness function values. Retain the top
N individuals with the best fitness as the final initial
population P.

To adapt to the switch migration problem, the solution
update strategy is also modified. By combining the encoding
strategy mentioned above, we have introduced crossover (CR)
and mutation (MU) operations from genetic algorithm [31]
to update the positions of grey wolf individuals. Specifically,
for each grey wolf individual, we select alpha, beta, and delta
wolves with equal probabilities for crossover and mutation
operations, which are shown as follows:

Xt+1 =
⎧
⎨

⎩

CR&MU
[
Xt, Xα

]
, 0 ≤ r < 1

3
CR&MU

[
Xt, Xβ

]
, 1

3 ≤ r < 2
3

CR&MU
[
Xt, Xδ

]
, 2

3 ≤ r < 1.

(24)

First, we randomly select a wolf from alpha, beta, and delta
with equal probabilities. Then, a crossover point is randomly
selected for each solution, and the crossover operation is
performed between the two solutions at the selected point.
After the crossover, the mutation operation is carried out
using the random resetting method. This method randomly
modifies several elements in the solution by replacing them
with permissible values within the specified range.

The specific execution process of the bidirectional switch
migration algorithm is shown in Algorithm 2. The inputs to
this algorithm include the set of overloaded and underloaded
controllers obtained from Algorithm 1. Along with the set of

Algorithm 2 Multi-to-Multi Bidirectional Switch Migration

Input: Overloaded controller set ĈO, Underloaded controller
set ĈU , Switch set Ŝ, Pupolation size N, Max number of
iteration Max_Iter;

Output: Optimal solution Xα , Load balancing flag LB;
1: Initialization: n = 0, iter = 0, P1 = ∅, P2 = ∅, Xα =
∅, Xβ = ∅, Xδ = ∅;

2: Randomly initialize the grey wolf population P1;
3: Generate the reversed population P2 based on P1;
4: P′ = sort(P1 + P2);
5: Select the top N solutions from P′ and construct popula-

tion P;
6: Select the best three solutions as Xα, Xβ, Xδ;
7: while iter < Max_Iter do
8: for Xt ∈ P do
9: Update Xt using Eq. (24);

10: end for
11: Calculate the fitness of all solutions;
12: Update Xα, Xβ, Xδ;
13: iter = iter + 1;
14: end while
15: LB = balanced(Xα);
16: return Xα, LB.

switches, these two sets serve as the basis for encoding. The
algorithm also requires parameters, including the maximum
number of iterations and the population size. The first step is
the initialization of the population, which involves employing
the reverse learning strategy with elite retention as outlined
from steps 2 to 5. After initialization, the three best individuals,
Xα , Xβ , and Xδ , are identified based on their fitness function
value, as described in step 6. Subsequently, we proceed
with the iterative search for the optimal solution, where the
population individuals update their positions using the (24).
After the position update, the fitness of each gray wolf
individual is recalculated, and three best solutions are updated
accordingly, as described from steps 7 to 14. At the maximum
number of iterations, we assess if the optimal solution achieves
load balancing in step 15. When there is a controller with a
load exceeding the threshold, the function returns 0; otherwise,
it returns 1. Finally, the algorithm returns the optimal solution,
and the binary variable LB, which represents whether the
optimal solution achieves load balancing or not.

C. Isolated Nodes Integration

Switch migration for control plane load balancing may lead
to the presence of isolated nodes in the network. As shown
in Fig. 8, when controller C1 becomes overloaded, migrating
switch S4 to controller C3 can achieve load balancing, but
S4 becomes an isolated node. When S4 communicates with
switches S7–S9 in the same control domain, it needs to
pass through the domain network managed by controller
C1, resulting in cross-domain communication, as shown in
Fig. 8(a). To address the issue of isolated nodes caused by
switch migration, we propose the isolated node integration
algorithm. Once the bidirectional migration process is finished,
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(a) (b)

Fig. 8. Example of isolated node integration. (a) Before isolated node
integration. (b) After isolated node integration.

the proposed algorithm proceeds to identify isolated nodes
within the network. Subsequently, it initiates switch migration
to transfer the isolated switches to the master controllers
of adjacent nodes, effectively reducing their occurrence. As
shown in Fig. 8(b), we perform integration for the isolated
node S4 and migrate it to the domain network controlled
by C2. This ensures the connectivity of all switches in the
same control domain. In this case, we abstract the network
topology as an undirected graph, denoted as G = (Ŝ, E), where
Ŝ represents the set of switches, and each switch in the set
also represents a node in the network. E represents the set of
edges, representing the links between switches. Each switch
Sk has its corresponding master controller, denoted as C(Sk).
A switch Sk is identified as an isolated node if its master
controller C(Sk) differs from the master controllers of all its
adjacent switches, denoted as Neighbor(Sk). The mathematical
representation of this definition is as follows:

∑

Sm∈Neighbor(Sk)

C(Sm) ∩ C(Sk) = ∅. (25)

During the process of node integration, in order to minimize
the impact on controller load balancing, we first prioritize
selecting the isolated node with the smallest sending volume of
Packet-In messages for integration. Moreover, when selecting
the appropriate controller for the isolated node, we prioritize
the master controllers of its adjacent nodes based on their
remaining capacity. Additionally, to avoid the controller over-
load, we define the following constraint:

L(Sk, t + 1)+ L(CT , t + 1) < σT (26)

where σT represents the overload threshold of controller CT ,
if the remaining capacity of controller CT is insufficient, we
refrain from executing the integration operation to prevent the
occurrence of load imbalances.

The overall process of the isolated node integration algo-
rithm is presented in Algorithm 3. The algorithm accepts two
inputs: 1) the network topology G and 2) the migration set MS,
obtained from decoding the optimal solution of bidirectional
migration. First, we traverse all switch nodes in the network
and identify all isolated nodes based on the mapping relation-
ship between the switches and the controllers. Subsequently,
we sort these isolated nodes in ascending order based on the
number of Packet-In messages sent from each node and then
select the first isolated node Sk for integration, as described
from steps 11 and 12. To select the target controller for

Algorithm 3 Isolated Nodes Integration
Input: Network topology G, Migration set MS;
Output: Migration set MS;

1: Initialization: iso_list = ∅, con_list = ∅, Ŝ← G;
2: for Si ∈ Ŝ do
3: Ci = master(Si);
4: for Sj ∈ neighbors(Si) do
5: con_list[i].add(master(sj));
6: end for
7: if Ci /∈ con_list[i] then
8: iso_list.add(Si);
9: end if

10: end for
11: Sort(iso_list);
12: Pick the first switch Sk from iso_list;
13: Sort(con_list[k]);
14: Pick the first controller Cm from con_list[k];
15: if L(Sk, t + 1)+ L(Cm, t + 1) < σm then
16: MS.update(〈Ck, Sk, Cm〉);
17: end if
18: return MC.

integration, we sort the controllers and choose the one with the
lightest load, denoted as Cm. Next, we evaluate whether the
integration operation would cause controller load imbalance.
If Cm has enough remaining capacity, we generate a migration
triplet and update the migration set MS, as shown from
steps 13 to 17.

D. Switch Migration Execution

The migration execution algorithm coordinates the load
prediction module, bidirectional migration module, and iso-
lated node integration module. When detecting a load
imbalance among multiple controllers, the algorithm utilizes
the load prediction module to identify overloaded and under-
loaded controllers. It calls the multi-to-multi bidirectional
migration algorithm to search for an optimal solution, which
is then decoded to generate a migration set. The algorithm
subsequently employs the isolated node integration algorithm
to reduce the occurrence of isolated nodes and updates the
migration set accordingly. Finally, switch migration operations
are performed based on the updated migration set.

The specific procedure of the switch migration execution
algorithm is depicted in Algorithm 4. The algorithm takes
inputs, including the set of overloaded controllers ĈO, the
set of underloaded controllers ĈU , the set of switches Ŝ, and
the network topology G. Switch migration will be carried out
only when ĈO is nonempty, and this condition is checked in
step 2. If so, the bidirectional migration algorithm is called
to search for the optimal solution within a limited number
of iterations. To determine the feasibility of this solution, the
return value LB is used to evaluate whether the current solution
can achieve load balancing. If LB equals 1, it indicates that the
solution can achieve load balancing, and the optimal solution
is decoded to obtain the migration set MS. If LB equals 0,
the solution is abandoned. Subsequently, the isolated node
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Algorithm 4 Switch Migration Execution

Input: Overloaded controller set ĈO, Underloaded controller
set ĈU , Switch set Ŝ, Pupolation size N, Max number of
iteration Max_Iter, Network topology G;

Output: Migration set MS;
1: Initialization: MS = ∅, opt_sol = null;
2: if ĈO = ∅ then
3: opt_sol, LB← Algo.2(ĈO, ĈU, Ŝ, N, Max_Iter);
4: if LB == 1 then
5: MS← decode(opt_sol);
6: end if
7: MS← Algo.3(G, MS);
8: end if
9: return MS.

TABLE I
TOPOLOGY FEATURES

integration algorithm is called to identify and make integration
decisions for isolated nodes. Finally, the migration set MS is
updated and returned.

IV. PERFORMANCE EVALUATION

The BSM-LP is implemented using the Ryu controller [32]
and the Mininet simulation platform [33]. Ryu is an open-
source SDN/OpenFlow controller written in Python that
supports the OpenFlow v1.3 protocol. Mininet is a lightweight
process virtualization simulation tool that allows users to
quickly build large-scale SDN prototype systems on resource-
constrained devices. In this experiment, our experimental
device is powered by an AMD Ryzen 5 5600H CPU with
Radeon graphics, and it has a memory capacity of 16.0 GB.
Additionally, in this experiment, we deploy four controllers
in the control plane, and each controller has a capacity (i.e.,
CapacityCi

) of 2500 Packet-In per second, and the threshold
δi is set to 0.6 CapacityCi

[16], which means if a controller
has to handle more than 1500 Packet-In per second, it will
be denoted as the overloaded controller. In addition, we
selected four topologies with increasing scales [34], [35] for
experimentation to validate the adaptability of BSM-LP under
different topology. The characteristics of these topologies are
shown in Table I.

A. Performance Metrics and Comparison Schemes

In the experiment, we selected four metrics for performance
evaluation.

1) Response Time: The average response time of the
controller significantly increases when there is a load
imbalance. As response time also reflects the quality of
network services, we adopt it as an evaluation metric.

2) Load Imbalance Rate: The load imbalance rate is the
most effective metric for measuring switch migration

performance. A lower load imbalance rate indicates a
more evenly distributed load and better load balancing
performance.

3) Migration Cost: Switch migration can disrupt network
services and affect network stability. Thus, migration
cost is considered as an evaluation metric.

4) Number of Occurrences of Overload (Below, It Is Called
NOO for Short): Improper switch migration can lead
to an increase in NOO, leading to frequent switch
migration operations and reduced efficiency. Therefore,
NOO is considered as a metric.

Furthermore, we have implemented the following five
schemes on Ryu for comparative evaluation.

1) Static Mapping Between Controller and Switch (SMCS):
The mapping relationship between switches and con-
trollers remains static, and no switch migration
mechanism is employed in the experiment.

2) Condition-Aware Switch Migration (CASM) [36]: This
scheme prioritizes the controller with the heaviest load
and transfers the switch with the highest rate of Packet-
In messages to the controller with the lightest load.

3) TSSM [16]: This scheme allows two controllers to
share a switch’s load sequentially in the same period
and achieves load balancing with finer-grained switch
migration.

4) Switches Group-Based Load Balancing (SGLB) [37]:
This scheme selects a group of switches managed by
overloaded controllers for migration while considering
the remaining capacity of the target controller.

5) Optimum Greedy-Based Switch Migration (OptiGSM)
[38]: The scheme dynamically partitions overloaded
controllers based on average load and migrates switches
to controllers with lighter loads using an optimum
greedy strategy.

B. Load Prediction Model Evaluation

As a supervised learning model, ATT-GRU relies on a
substantial amount of training data to learn temporal features
before making predictions. In this study, we adopted the
methodology outlined in [39] to obtain the required training
and testing data sets, which involves generating network traffic
by replaying the pcap file and conducting data collection. Using
the Mininet tool, we simulated four network topologies: 1)
Abilene; 2) Noel; 3) Janos-us; and 4) Pioro. In these topologies,
each switch is connected to a virtual host, and MAC and
IP addresses are assigned accordingly. For our experiment,
we use the pcap files from the MAWI Working Group [40]
in Japan, which is dedicated to network measurement and
analysis. These pcap files contain anonymized global Internet
traffic data, providing valuable insights into the performance,
characteristics, and evolution of the Internet. Specifically, we
selected a specific time interval (January 1, 2022, from 14:00 to
14:15) [41] and employed the tcpreplay tool [42] to replay the
captured traffic. During traffic replay, we collect the number of
Packet-In messages sent from each switch to the controller at
fixed time intervals. This data is then processed and saved as
CSV files, which serve as the training and testing data sets. We
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normalize the input data to the interval [0, 1], and the training set
comprises 80% of the data, while the remaining 20% is allocated
for testing. Moreover, to evaluate the prediction performance
of the model, we select the following four evaluation metrics
to measure the error between the real load information and the
predicted values:

1) To quantify the prediction errors, Root Mean-Squared
Error (RMSE) is calculated as follows:

RMSE =
√
√
√
√ 1

MN

M∑

j=1

N∑

i=1

(
yj

i − ŷj
i

)2
. (27)

2) To estimate the mean deviation, Mean Absolute Error
(MAE) is calculated as follows:

MAE = 1

MN

M∑

j=1

N∑

i=1

∣
∣
∣y

j
i − ŷj

i

∣
∣
∣. (28)

3) To assess the effectiveness of the predictions, Accuracy
is calculated below:

Accuracy = 1−
∣
∣
∣
∣
∣
∣Y − Ŷ

∣
∣
∣
∣
∣
∣
F

||Y||F . (29)

4) To express the prediction error as a percentage, Mean
Absolute Percentage Error (MAPE) is calculated below:

MAPE = 1

MN

M∑

j=1

N∑

i=1

∣
∣
∣
∣
∣

yj
i − ŷj

i

yj
i

∣
∣
∣
∣
∣

(30)

where yj
i and ŷj

i are the real and predicted number of Packet-
In messages sent from switch i, respectively. N is the number
of switches in the network and M is the number of temporal
samples. Y and Ŷ represent the sets of yj

i and ŷj
i, respectively.

In addition, we compared the performance of our model
with the following three methods.

1) GRU Model [22]: As a variant of RNN, GRU’s gating
mechanisms excel at capturing long-term dependencies
and yielding great predictive results, making it a suitable
baseline model for comparison.

2) Support Vector Regression Model (SVR) [43]: Being
a traditional method, it effectively captures nonlinear
patterns in the data through kernel functions and achieves
accurate predictions, making it a selected baseline method.

3) Temporal Graph Convolutional Network (TGCN) [44]:
As a hybrid model, it uses the spatiotemporal correlation
within historical data to achieve accurate predictions.
Thus, it is chosen as one of the baseline methods.

We performed traffic replay and generated corresponding
data sets in different network topologies. Table II displays the
comparison results of the ATT-GRU model with other models
in terms of prediction error and accuracy on different data sets.
The results indicate that the ATT-GRU model achieves better
prediction performance under different evaluation metrics.
Specifically, the ATT-GRU model achieves an average reduc-
tion of approximately 41.2%, 45.3%, and 48.5% in RMSE,
MAE, and MAPE, respectively, compared to the three baseline
methods, while also improving accuracy by an average of
approximately 7.8%.

TABLE II
PREDICTION RESULTS OF THE ATT-GRU MODEL AND

OTHER BASELINE METHODS

C. Performance Evaluation

In the evaluation, we conduct the effectiveness test and the
performance test separately. First, we recorded load changes of
each controller under the BSM-LP and SMCS schemes during
load imbalances to validate the effectiveness of our scheme.
To further demonstrate the load balancing performance of
the BSM-LP scheme, we conducted comparative tests under
various topologies. In these tests, we simulated real-world
network traffic by replaying the pcap files mentioned above.
By default, the tcpreplay tool replays the traffic at the original
recorded speed [45]. However, the tcpreplay tool allows users
to adjust the replay speed using the multiplier option [46]. By
adjusting the multiplier values, we can control the replaying
speed to simulate various traffic load conditions without
exceeding the controller’s capacity. In our tests, we select four
different multiplier values to simulate different traffic load
conditions and evaluate the load balancing performance of
each scheme under different network states. Finally, we also
conducted the experiments to validate the scalability of the
BSM-LP scheme.

1) Effectiveness of BSM-LP: To validate the effectiveness,
we conducted a simulation test on the Abilene topology for
300 s with a sampling interval of 5 s. We compared the BSM-
LP scheme with the SMCS scheme. In the SMCS scheme,
we increased the load on controller C4 starting from the 40th
second, which significantly surpassed the load on the other
three controllers and exceeded the threshold, as shown in
Fig. 9(a). Due to the static controller-switch connections in
SMCS, the load imbalance persisted throughout the exper-
iment. In contrast, Fig. 9(b) shows the dynamic controller
load adaptation in the BSM-LP scheme. As the load on con-
troller C4 increases, our proposed scheme efficiently detects
the overloaded controller and implements switch migration
strategies to offload a portion of the load from controller C4
to the underloaded controller C3. Consequently, the load on
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(a) (b)

Fig. 9. (a) Load distribution under SMCS scheme. (b) Load distribution under BSM-LP scheme.

(a) (b) (c) (d)

Fig. 10. Comparison of the response time under different topologies. (a) Abilene. (b) Noel. (c) Janos-us. (d) Pioro.

(a) (b) (c) (d)

Fig. 11. Comparison of the load imbalance rate under different topologies. (a) Abilene. (b) Noel. (c) Janos-us. (d) Pioro.

controller C4 remains below the overload threshold, achieving
a balanced load distribution.

2) Response Time: The response time for processing a sin-
gle Packet-In message is defined as the time interval between
the arrival of the Packet-In message at the controller and the
arrival of the corresponding generated Packet-Out message
at the switch. As illustrated in Fig. 10, the SMCS scheme,
which lacks load balancing strategies, exhibits an increase in
average response time as the replay speed increases. However,
the SGLB, TSSM, CASM, OptiGSM, and BSM-LP schemes
adopt switch migration strategies to ensure load balancing.
As a result, the average response time is reduced by 46.6%,
54.8%, 56.4%, 52.1%, and 63.4%, respectively, compared to
the SMCS scheme. In addition, the BSM-LP scheme utilizes
a bidirectional migration strategy based on load prediction,
resulting in a more balanced load distribution among multiple
controllers. Therefore, compared to the SGLB, TSSM, CASM,
and OptiGSM schemes, the BSM-LP scheme achieves an
average response time reduction of 29.3%, 18.6%, 17.2%, and
23.8%, respectively.

3) Load Imbalance Rate: The load imbalance rate for
different schemes under various network topologies is depicted
in Fig. 11. The load imbalance rate is defined based on (23),

where a smaller value indicates more even load distribution
among the controllers. Across different network topologies,
the SMCS scheme, relying on static mapping, exhibits the
highest load imbalance rate. In contrast, the SGLB, TSSM,
CASM, OptiGSM, and BSM-LP schemes, employing switch
migration strategies, achieve an average reduction in load
imbalance rate of 41.8%, 43.1%, 43.3%, 43.9%, and 52.1%,
respectively. Notably, the BSM-LP scheme incorporates the
ATT-GRU model for load prediction, enhancing the accuracy
of switch selection in bidirectional migration decision mak-
ing, thereby maintaining the load imbalance rate below 0.5.
Consequently, compared to the SGLB, TSSM, CASM, and
OptiGSM schemes, which utilize traditional unidirectional
migration strategies, the load imbalance rate of BSM-LP is
further reduced by 17.1%, 15%, 14.2%, and 13.5%, respec-
tively, resulting in superior load balancing effects.

4) Occurrences of Overload: In the experiment, we record
the total number of controller overload occurrences (i.e.,
NOO) for different schemes. The controller in the SMCS
scheme, as depicted in Fig. 12, has the highest NOO among
all the schemes as it cannot adjust the mapping relationship.
Compared to the SMCS scheme, the BSM-LP, CASM, SGLB,
OptiGSM, and TSSM schemes achieve remarkable reductions
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(a) (b) (c) (d)

Fig. 12. Comparison of the NOO under different topologies. (a) Abilene. (b) Noel. (c) Janos-us. (d) Pioro.

(a) (b) (c) (d)

Fig. 13. Comparison of the migration cost under different topologies. (a) Abilene. (b) Noel. (c) Janos-us. (d) Pioro.

in NOO by approximately 83%, 77.9%, 62.3%, 80.4%, and
67%, respectively. In addition, the BSM-LP scheme leverages
load prediction to assess the controller’s overload state when
the real-time load exceeds the threshold, thereby avoiding
unnecessary switch migration operations. Under the four
topologies, the BSM-LP scheme reduces the NOO by approx-
imately 51.3% and 42.5% compared to the SGLB and TSSM
schemes, respectively. Furthermore, in the Abilene topology,
the BSM-LP scheme achieves an average NOO reduction of
approximately 38.8% and 25.1% compared to the CASM and
OptiGSM schemes.

5) Migration Cost: The test results of migration cost under
different topologies are shown in Fig. 13. We define the
migration cost as the aggregate number of times to migrate
switches among different controllers. Since the SMCS scheme
does not perform switch migration, it is not included in
the comparison. The CASM scheme aims to alleviate the
load of an overloaded controller by selecting the switch with
the highest Packet-In message sending volume for migration,
which can easily overload the target controller. The SGLB
scheme uses a group-based switch migration strategy, which
involves multiple switches in each migration, resulting in
higher migration cost. The OptiGSM scheme achieves lower
migration cost in various topologies by employing an optimum
greedy strategy for selecting switches to migrate. In con-
trast, the BSM-LP scheme takes into account both migration
cost and load imbalance rate during bidirectional migration
decisions. Therefore, in the Janos and Pioro topologies, the
BSM-LP scheme achieves an average reduction in migration
cost of 49.3% compared to the SGLB scheme. In the Abilene
topology, the BSM-LP scheme reduces migration cost by
an average of 23.8% compared to CASM. However, due to
the utilization of a bidirectional migration strategy and the
requirement to integrate isolated nodes, the BSM-LP scheme
exhibits a higher migration cost than the other four schemes
in certain test scenarios.

6) Scalability: Fig. 14 shows the scalability of the BSM-
LP scheme with a varying number of IoT devices and

(a) (b)

Fig. 14. (a) Load imbalance rate with varying number of IoT devices.
(b) Load imbalance rate with varying number of controllers.

controllers under the Abilene topology. Fig. 14(a) shows that
as the number of IoT devices increases, the BSM-LP scheme
achieves improved load balancing performance. It reduces
the average load imbalance rate by approximately 34.5%
compared to the SMCS scheme. From Fig. 14(b), it is evident
that as the number of controllers increases, the load imbalance
rate also increases under the SMCS scheme. In contrast, the
BSM-LP scheme is capable of maintaining the load imbalance
rate below 0.3. Specifically, the BSM-LP scheme achieves
an average reduction of approximately 56.7% in the load
imbalance rate compared to the SMCS scheme.

V. CONCLUSION

In this article, we propose the BSM-LP scheme to address
the problem of load imbalances among multiple controllers in
SD-IoT. In this scheme, we use the ATT-GRU model to predict
future controller loads, thereby avoiding unnecessary switch
migrations. Meanwhile, we introduce a bidirectional migration
algorithm that effectively improves migration efficiency and
resolves the problem of overloading the target controller.
Additionally, we present an isolated node integration algorithm
to reduce the occurrence of isolated nodes. Finally, the exper-
imental results validate the effectiveness of the scheme, and
compared to existing schemes, it achieves an average reduction
of 22.3% in load imbalance rate and an average decrease
of 30.5% in response time. Although the proposed BSM-LP
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scheme improves load balancing performance among multiple
controllers, further optimization is necessary. Specifically, the
limitations of this scheme include the potential for higher
migration cost in certain scenarios and the inability to dynam-
ically adjust the number of controllers deployed in the control
plane based on changes in the total load. Therefore, in our
future research, we will focus on reducing switch migration
cost and developing intelligent solutions to dynamically adjust
controller numbers in the control plane for improved adapta-
tion to network load changes.
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